首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reliable and short synthetic routes to polycyclic aromatic hydrocarbons and nanographenes are important in materials science. Herein, we report an efficient one‐step annulative π‐extension reaction of alkynes that provides access to diarylphenanthrenes and related nanographene precursors. In the presence of a cationic palladium/o ‐chloranil catalyst system and dibenzosiloles or dibenzogermoles as π‐extending agents, a variety of diarylacetylenes are transformed successfully into 9,10‐diarylphenanthrenes in a single step with good functional‐group tolerance. Furthermore, double π‐extension reactions of 1,4‐bis(phenylethynyl)benzene and diphenyl‐1,3‐butadiyne are demonstrated, affording oligoarylene products, which show potential for application in the synthesis of larger polycyclic aromatic hydrocarbons and nanographenes.  相似文献   

2.
This study presents a new type of negatively curved nanographene (C86H32) that contains an unprecedented pattern of heptagons. A tert‐butylated derivative of C86H32 was successfully synthesized using tetrabenzodipleiadiene as a key building block. This synthesis involved a ring expansion reaction as a key step to form the seven‐membered rings in the framework of tetrabenzodipleiadiene. The single‐crystal structure reveals a saddle‐shaped molecule with a highly bent naphthalene moiety at the center of the polycyclic backbone. As found from the DFT calculations, this aromatic saddle is flexible at room temperature and has a saddle‐shaped geometry as the dominant conformation. The DFT calculations along with experimental results show that the attachment of t‐butyl groups to the central tetrabenzodipleiadiene moiety of nanographene C86H32 can stabilize the saddle conformation and make this nanographene less flexible.  相似文献   

3.
Functionalized 3,4‐dihalogenated furan‐2(5 H)‐ones can be readily prepared in moderate to good yields by treating 4‐hydroxy‐4‐arylbut‐2‐ynoate derivatives with ICl, IBr, and I2. Both halogen atoms of the electrophile are incorporated in the product. The resulting halides can further afford polycyclic aromatic compounds using known palladium‐catalyzed coupling reactions.  相似文献   

4.
A new fast and effective analysis method has been developed to simultaneously determine 16 polycyclic aromatic hydrocarbons in reclaimed water samples by ultra‐performance convergence chromatography with photodiode array detection and solid‐phase extraction. The parameters of ultra‐performance convergence chromatography on the separation behaviors and the crucial condition of solid‐phase extraction were investigated systematically. Under optimal conditions, the 16 polycyclic aromatic hydrocarbons could be separated within 4 min. The limits of detection and quantification were in the range of 0.4–4 and 1–10 μg/L in water, respectively. This approach has been applied to a real industrial wastewater treatment plant successfully. The results showed that polycyclic aromatic hydrocarbons were dramatically decreased after chemical treatment procedure, and the oxidation procedure was effective to remove trace polycyclic aromatic hydrocarbons.  相似文献   

5.
A generic approach to the regiospecific synthesis of halogenated polycyclic aromatics is made possible by the one‐ or two‐directional benzannulation reactions of readily available (ortho‐allylaryl)trichloroacetates (the “BHQ” reaction). Palladium‐catalysed cross‐coupling reactions of the so‐formed haloaromatics enable the synthesis of functionalised polycyclic aromatic hydrocarbons (PAHs) with surgical precision. Overall, this new methodology enables the facile mining of chemical space in search of new electronic functional materials.  相似文献   

6.
The amphiphilic polymer‐grafted silica was newly prepared as a stationary phase in high‐performance liquid chromatography. Poly(4‐vinylpyridine) with a trimethoxysilyl group at one end was grafted onto porous silica particles and the pyridyl side chains were quaternized with 1‐bromooctadecane. The obtained poly(octadecylpyridinium)‐grafted silica was characterized by elemental analysis, diffuse reflectance infrared Fourier transform spectroscopy and Brunauer–Emmett–Teller analysis. The degree of quaternization of the pyridyl groups on the obtained stationary phase was estimated to be 70%. The selective retention behaviors of polycyclic aromatic hydrocarbons including some positional isomers were investigated using poly(octadecylpyridinium)‐grafted silica as an amphiphilic polymer stationary phase in high‐performance liquid chromatography and results were compared with commercially available polymeric octadecylated silica and phenyl‐bonded silica columns. The results indicate that the selectivity toward polycyclic aromatic hydrocarbons exhibited by the amphiphilic polymer stationary phase is higher than the corresponding selectivity exhibited by a conventional phenyl‐bonded silica column. However, compared with the polymeric octadecylated silica phase, the new stationary phase presents similar retention behavior for polycyclic aromatic hydrocarbons but different retention behavior particularly for positional isomers of disubstituted benzenes as the aggregation structure of amphiphilic polymers on the surface of silica substrate has been altered during mobile phase variation.  相似文献   

7.
An adsorbent of carbon dot@poly(glycidyl methacrylate)@Fe3O4 nanoparticles has been developed for the microwave‐assisted magnetic solid‐phase extraction of polycyclic aromatic hydrocarbons in environmental aqueous samples prior to high‐performance liquid chromatography with UV/visible spectroscopy detection. Poly(glycidyl methacrylate) was synthesized by atom transfer radical polymerization. The chain length and amount of carbon dots attached on them can be easily controlled through changing polymerization conditions, which contributes to tunable extraction performance. The successful fabrication of the nano‐adsorbent was confirmed by transmission electronic microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and vibrating sample magnetometry. The extraction performance of the adsorbent was evaluated by using polycyclic aromatic hydrocarbons as model analytes. The key factors influencing the extraction, such as microwave power, adsorption time, desorption time and desorption solvents were investigated in detail. Under the optimal conditions, the microwave‐assisted method afforded magnetic solid‐phase extraction with short extraction time, wide dynamic linear range (0.02–200 μg/L), good linearity (R2 ≥ 98.57%) and low detection limits (20–90 ng/L) for model analytes. The adsorbent was successfully applied for analyzing polycyclic aromatic hydrocarbons in environmental aqueous samples and the recoveries were in the range of 86.0–124.2%. Thus, the proposed method is a promising candidate for fast and reliable preconcentration of trace polycyclic aromatic hydrocarbons in real water samples.  相似文献   

8.
Nano‐molybdenum trioxide was prepared from nano‐molybdenum disulfide by simple firing in muffle furnace. Nano‐molybdenum trioxide was used as the extraction coating on the stainless steel wire. Four wires were filled in a polyetheretherketone tube to get an extraction tube. The tube was connected to the six‐port valve of a high performance liquid chromatograph, and the online analysis system was constructed. Extraction selectivity of the tube for different types of compounds, including polycyclic aromatic hydrocarbons, plasticizers, estrogens, anilines and neonicotinoids, was studied. Good enrichment ability for polycyclic aromatic hydrocarbons, but the extraction efficiency of others was not satisfactory. Using eight polycyclic aromatic hydrocarbons as the targets, an analytical method was established after optimizing main factors such as sampling volume, sampling rate, methanol content, and desorption time. The established method exhibited wide linear range to 0.016–20.00 μg/L and low limits of detection to 0.005 μg/L, and the enrichment factors can be up to 2443. The method was applied to the detection of trace polycyclic aromatic hydrocarbons in tap water and river water, and a good recovery was obtained. The tube showed good durability and chemical stability, and it still remained good extraction effect after more than 140 run.  相似文献   

9.
A new paratert‐butylcalix[4]arene column containing thiadiazole functional groups was prepared and used for the separation of polycyclic aromatic hydrocarbons, phenolic compounds, aromatic amines, benzoic acid and its derivatives by high‐performance liquid chromatography (HPLC). The effect of organic modifier content in the mobile phase on retention and selectivity of these compounds were investigated. The results indicate that the stationary phase behaves like reversed‐phase packing. However, hydrogen bonding, π–π and inclusion interactions seem to be involved in the separation process. The column has been successfully employed for the analysis of clenbuterol in pork and pig casing; the limit of detection and the limit of quantitation for this method by HPLC‐UV detection was 0.03 and 0.097 μg/mL, respectively; the method is demonstrated to be suitable and a competitive alternative analytical method for the determination of clenbuterol.  相似文献   

10.
Large aza‐analogues of curved polycyclic aromatic hydrocarbons with a double‐helicene structure present unique features for molecular photonics. We present the preparation and characterization of three such structures. The synthesis of these heterocyclic nanographenes involves only a few high‐yield steps that use readily available starting materials. X‐ray analysis revealed that each of these new dyes has three conformational isomers: one diastereoisomer in a meso form and two enantiomers in twisted forms [(P,P)] and [(M,M)]. The low energy barriers between the conformers, however, prevent their separation by using chiral HPLC, and the NMR spectra show only one set of signals for each of these curved compounds. Density functional theory (DFT) calculations quantify the small energy difference and the small energy barriers between the chiral and meso forms, which fully supports the experimental results. Their optical absorption lacks any sensitivity to the solvent environment, whereas their fluorescence features exhibit pronounced solvatochromism. This rarely observed solvatofluorochromism of centrosymmetric molecules without either electron‐withdrawing groups or ‐donating substituents was probed by using time‐resolved spectroscopy. These studies suggest that, similar to 9,9′‐bianthryl, the nonpolar locally excited state shows negligible solvatochromism, whereas the charge‐transfer state is sensitive to solvent polarity.  相似文献   

11.
To enhance the extraction performance, a mesoporous silica was modified with ordered mesoporous carbon for solid‐phase microextraction. Three stainless‐steel wires coated with the mesoporous material were placed in a polyetheretherketone tube for getting an extraction tube. The tube was coupled to high‐performance liquid chromatography with diode array detector, and the online analysis system was constructed. Then its extraction performance was evaluated using hydrophobic polycyclic aromatic hydrocarbons, phthalates, and hydrophilic neonicotinoids. The best selectivity was presented for polycyclic aromatic hydrocarbons. Several main conditions were optimized such as sampling volume, sampling rate, methanol concentration in the sample, and desorption time, a rapid and sensitive analytical method was established toward polycyclic aromatic hydrocarbons. The analytical method exhibited wide linear range from 0.017 to 15 µg/L with acceptable correlation coefficients more than 0.9990, limits of detection in 0.005‐0.020 µg/L, limits of quantification ranging from 0.017 to 0.066 µg/L as well as large enrichment factors of 377‐2314. It was successfully applied to detect trace polycyclic aromatic hydrocarbons in some real water samples including tap water, snow water, and domestic sewage.  相似文献   

12.
A novel, low‐cost and effective in‐needle solid‐phase microextraction device was developed for the enrichment of trace polycyclic aromatic hydrocarbons in water samples. The in‐needle solid‐phase microextraction device could be easily assembled by inserting hydrofluoric acid‐etched wires, which were used as adsorbent, into a 22‐gauge needle tube within spring supporters. Compared with the commercial solid‐phase microextraction fiber, the developed device has higher efficiency for the extraction of polycyclic aromatic hydrocarbons with four to six rings from water samples using the optimized extraction conditions. With gas chromatography equipped with a flame ionization detector, the limits of detection for the polycyclic aromatic hydrocarbons with four to six rings ranged from 0.0020 to 0.0067 ng/mL. The relative standard deviations for one needle and needle‐to‐needle extractions were in the range of 5.2–9.9% (n = 5) and 3.4–12.3% (n = 5), respectively. The spiked recoveries of the polycyclic aromatic hydrocarbons in tap water samples ranged from 73.2 to 95.4%. This in‐needle solid‐phase microextraction device could be a good field sampler because of the low sample loss over a long storage time.  相似文献   

13.
An in‐tube solid‐phase microextraction device was developed by packing poly(ionic liquids)‐coated stainless‐steel wires into a polyether ether ketone tube. An anion‐exchange process was performed to enhance the extraction performance. Surface properties of poly(ionic liquids)‐coated stainless‐steel wires were characterized by scanning electron microscopy and energy dispersive X‐ray spectrometry. The extraction device was connected to high‐performance liquid chromatography equipment to build an online enrichment and analysis system. Ten polycyclic aromatic hydrocarbons were used as model analytes, and important conditions including extraction time and desorption time were optimized. The enrichment factors from 268 to 2497, linear range of 0.03–20 μg/L, detection limits of 0.010–0.020 μg/L, extraction and preparation repeatability with relative standard deviation less than 1.8 and 19%, respectively were given by the established online analysis method. It has been used to detect polycyclic aromatic hydrocarbons in environmental samples, with the relative recovery (5, 10 μg/L) in the range of 85.1–118.9%.  相似文献   

14.
A 25,27‐bis(l ‐phenylalaninemethylester‐N‐carbonylmethoxy)‐26,28‐dihydroxy‐ paratert‐butylcalix[4]arene‐bonded silica gel stationary phase was synthesized, structurally characterized and used for LC. Its separation mechanism was studied and compared with octadecyl‐bonded stationary phase, as well as our previously prepared para‐tert‐butylcalix[4]arene‐1,2‐crown‐4 stationary phase. Meanwhile, the chromatographic behaviors were investigated by using polycyclic aromatic hydrocarbons, monosubstituted benzenes, anilines, phenols, Tanaka tests solutes, fluoroquinolones, and flavonoids as probes. Mechanisms involved in the chromatographic separation included hydrophobic, π‐π and π‐electron transfer, hydrogen bonding, and inclusion interactions. Moreover, the column was successfully employed for the analysis of the illegal additive of melamine in milk product.  相似文献   

15.
We propose a method for the simultaneous determination of 15 kinds of polycyclic aromatic hydrocarbons in marine samples (muscle) employing gas chromatography with mass spectrometry after saponification with ultrasound‐assisted extraction and solid‐phase extraction. The experimental conditions were optimized by the response surface method. In addition, the effects of different lyes and extractants on polycyclic aromatic hydrocarbons extraction were discussed, and saturated sodium carbonate was first used as the primary saponification reaction and extracted with 10 mL of ethyl acetate and secondly 1 mol/L of sodium hydroxide and 10 mL of n‐hexane were used to achieve better results. The average recovery was 67–112%. Satisfactory data showed that the method has good reproducibility with a relative standard deviation of <13%. The detection limits of polycyclic aromatic hydrocarbons were 0.02–0.13 ng/g. Compared with other methods, this method has the advantages of simple pretreatment, low solvent consumption, maximum polycyclic aromatic hydrocarbons extraction, the fast separation speed, and the high extraction efficiency. It is concluded that this method meets the batch processing requirements of the sample and can also be used to determine polycyclic aromatic hydrocarbons in other high‐fat (fish, shrimp, crab, shellfish) biological samples.  相似文献   

16.
New aromatic aldimines, isatine substituted ketimines based on (4,6‐dichloro‐1,3,5‐triazin‐2‐yl)‐hydrazine scaffold and polycyclic fused thiopyranothiazoles formed using hetero‐Diels‐Alder reactions starting from 4‐thioxo‐2‐thiazolidinones and 5‐norbornene‐2,3‐dicarboxylic acid triazino‐derivatives synthetic approach is described. The application of condensation and cyclocondensation reactions of N‐nucleophiles and carbonyl agents for synthesis a number of biologically active triazine derivatives is reported. Screening of anticancer activity in vitro yielded the most active compounds 3a , 8b , and 8f for different cell lines.  相似文献   

17.
Steel stirrers jacketed with polytetrafluoroethylene can be regarded as an ideal substrate for stirrer bar sorptive extraction. However, it is still a great challenge to immobilize graphene onto a polytetrafluoroethylene stirrer due to the high chemical resistance of the surface of a polytetrafluoroethylene stirrer. We describe here a method to modify the surface of polytetrafluoroethylene stirrers with graphene. In this work, graphene was used as the sorbent due to its excellent adsorption capability for aromatic compounds, such as polycyclic aromatic compounds. Graphene was successfully immobilized onto polytetrafluoroethylene‐stirrer by a bio‐inspired polydopamine functionalization method. The graphene‐modified polytetrafluoroethylene‐stirrer shows good stability and tolerance to stirring, ultrasonication, strong acidic and basic solutions, and to organic solvents. The multilayer coating was characterized by scanning electronic microscopy and Fourier transform infrared spectroscopy. After the optimization of some experimental conditions, the graphene‐modified polytetrafluoroethylene stirrer was used for the stirrer bar sorptive extraction of polycyclic aromatic hydrocarbons, in which the binding between the polycyclic aromatic hydrocarbons and the graphene layer was mainly based on π–π stacking and hydrophobic interactions. The graphene‐modified polytetrafluoroethylene‐stirrer‐based stirrer bar sorptive extraction and high‐performance liquid chromatography method was developed for the determination of polycyclic aromatic hydrocarbons with great extraction efficiency, with enrichment factors from 18 to 62. The method has low limits of detection of 1–5 pg/mL, wide linear range (5–100 and 10–200 pg/mL), good linearity (R ≥ 0.9957) and good reproducibility (RSD ≤ 6.45%). The proposed method has been applied to determine polycyclic aromatic hydrocarbons in real dust samples. Good recoveries were obtained, ranging from 88.53 to 109.43%.  相似文献   

18.
Efficient and rapid access to nanographenes and π‐extended fused heteroaromatics is important in materials science. Herein, we report a palladium‐catalyzed efficient one‐step annulative π‐extension (APEX) reaction of polycyclic aromatic hydrocarbons (PAHs) and heteroaromatics, producing various π‐extended aromatics. In the presence of a cationic Pd complex, triflic acid, silver pivalate, and diiodobiaryls, diverse unfunctionalized PAHs and heteroaromatics were directly transformed into larger PAHs, nanographenes, and π‐extended fused heteroaromatics in a single step. In the reactions that afford [5]helicene substructures, simultaneous dehydrogenative ring closures occur at the fjord regions to form unprecedented larger nanographenes. This successive APEX reaction is notable as it stiches five aryl–aryl bonds by C−H functionalization in a single operation. Moreover, the unique molecular structures, crystal‐packing structures, photophysical properties, and frontier molecular orbitals of the thus‐formed nanographenes were elucidated.  相似文献   

19.
In this work, a polydimethylsiloxane/divinylbenzene fiber overcoated with a layer of polydimethylsiloxane was evaluated as analytical sampling tool for the first time in human urine. Urinary polycyclic aromatic hydrocarbons with 2–6 aromatic rings were considered as target compounds. The analyte uptake in kinetic and thermodynamic regime was evaluated and compared to the performances of polydimethylsiloxane/divinylbenzene and polydimethylsiloxane fibers. The assessment of the robustness and endurance of the overcoated fiber was carried out by direct immersion solid‐phase microextraction in undiluted urine performing up to 120 consecutive extractions. The overcoated fiber was then used to develop a fast and easy direct immersion solid‐phase microextraction with gas chromatography and triple quadrupole mass spectrometry protocol for the quantification of the target polycyclic aromatic hydrocarbons. The attained values of accuracy and precision were 75–114% and 2–19%, respectively, while the limits of quantification ranged between 0.05 and 1 ng/L. The proposed protocol was applied to the screening of urine samples collected from smoking and nonsmoking volunteers. The successful results obtained by using the overcoated fiber create not only new alternatives for polycyclic aromatic hydrocarbon exposure assessment but also new perspectives for the application of direct immersion solid‐phase microextraction to the analysis of bioclinical matrixes.  相似文献   

20.
CdS nanoparticles coated on a stainless‐steel wire for solid‐phase microextraction was prepared. Scanning electron microscopy showed that the CdS nanoparticles clustered together to form a porous structure and X‐ray diffraction confirmed that the CdS nanoparticles were the wurtzite phase. Coupled to gas chromatography with flame ionization detection, the extraction abilities of the fiber for polycyclic aromatic hydrocarbons were examined by the headspace method. The parameters of adsorption time, adsorption temperature, salt concentration, desorption time, and desorption temperature were investigated and optimized. For the method, wide linearity and low limits of detection from 5 to 15 ng/L were obtained. The relative standard deviations for single‐fiber repeatability and fiber‐to‐fiber reproducibility were less than 10.2 and 12.6%, respectively. The enrichment factors were from 1155.6 to 3905.4, showing the fiber has good extraction capacity for polycyclic aromatic hydrocarbons. Moreover, the fiber can be used more than 50 times, exhibiting good stability. The established method was also used to analyze the polycyclic aromatic hydrocarbons in two real samples, and the recoveries from 82.7 to 114.2% further proved the reliability of the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号