首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
The incorporation of β‐amino acid residues into the antiparallel β‐strand segments of a multi‐stranded β‐sheet peptide is demonstrated for a 19‐residue peptide, Boc‐LVβFVDPGLβFVVLDPGLVLβFVV‐OMe (BBH19). Two centrally positioned DPro–Gly segments facilitate formation of a stable three‐stranded β‐sheet, in which β‐phenylalanine (βPhe) residues occur at facing positions 3, 8 and 17. Structure determination in methanol solution is accomplished by using NMR‐derived restraints obtained from NOEs, temperature dependence of amide NH chemical shifts, rates of H/D exchange of amide protons and vicinal coupling constants. The data are consistent with a conformationally well‐defined three‐stranded β‐sheet structure in solution. Cross‐strand interactions between βPhe3/βPhe17 and βPhe3/Val15 residues define orientations of these side‐chains. The observation of close contact distances between the side‐chains on the N‐ and C‐terminal strands of the three‐stranded β‐sheet provides strong support for the designed structure. Evidence is presented for multiple side‐chain conformations from an analysis of NOE data. An unusual observation of the disappearance of the Gly NH resonances upon prolonged storage in methanol is rationalised on the basis of a slow aggregation step, resulting in stacking of three‐stranded β‐sheet structures, which in turn influences the conformational interconversion between type I′ and type II′ β‐turns at the two DPro–Gly segments. Experimental evidence for these processes is presented. The decapeptide fragment Boc‐LVβFVDPGLβFVV‐OMe (BBH10), which has been previously characterized as a type I′ β‐turn nucleated hairpin, is shown to favour a type II′ β‐turn conformation in solution, supporting the occurrence of conformational interconversion at the turn segments in these hairpin and sheet structures.  相似文献   

2.
《化学:亚洲杂志》2017,12(24):3195-3202
Herein we report the unique conformations adopted by linear and cyclic tetrapeptides (CTPs) containing 2‐aminobenzoic acid (2‐Abz) in solution and as single crystals. The crystal structure of the linear tetrapeptide H2N‐d ‐Leu‐d ‐Phe‐2‐Abz‐d ‐Ala‐COOH ( 1 ) reveals a novel planar peptidomimetic β‐turn stabilized by three hydrogen bonds and is in agreement with its NMR structure in solution. While CTPs are often synthetically inaccessible or cyclize in poor yield, both 1 and its N ‐Me‐d ‐Phe analogue ( 2 ) adopt pseudo‐cyclic frameworks enabling near quantitative conversion to the corresponding CTPs 3 and 4 . The crystal structure of the N ‐methylated peptide ( 4 ) is the first reported for a CTP containing 2‐Abz and reveals a distinctly planar 13‐membered ring, which is also evident in solution. The N ‐methylation of d ‐Phe results in a peptide bond inversion compared to the conformation of 3 in solution.  相似文献   

3.
A novel metal‐induced template for the self‐assembly of two independent phosphane ligands by means of unprecedented multiple noncovalent interactions (classical hydrogen bond, weak hydrogen bond, metal coordination, π‐stacking interaction) was developed and investigated. Our results address the importance and capability of weak hydrogen bonds (WHBs) as important attractive interactions in self‐assembling processes based on molecular recognition. Together with a classical hydrogen bond, WHBs may serve as promoters for the specific self‐assembly of complementary monomeric phosphane ligands into supramolecular hybrid structures. The formation of an intermolecular C? H???N hydrogen bond and its persistence in the solid state and in solution was studied by X‐ray crystal analysis, mass spectrometry and NMR spectroscopy analysis. Further evidence was demonstrated by DFT calculations, which gave specific geometric parameters for the proposed conformations and allowed us to estimate the energy involved in the hydrogen bonds that are responsible for the molecular recognition process. The presented template can be regarded as a new type of self‐assembled β‐turn mimic or supramolecular pseudo amino acid for the nucleation of β‐sheet structures when attached to oligopeptides.  相似文献   

4.
Fragmentation reactions of β‐hydroxymethyl‐, β‐acetoxymethyl‐ and β‐benzyloxymethyl‐butenolides and the corresponding γ‐butyrolactones were investigated by electrospray ionization tandem mass spectrometry (ESI‐MS/MS) using collision‐induced dissociation (CID). This study revealed that loss of H2O [M + H ?18]+ is the main fragmentation process for β‐hydroxymethylbutenolide (1) and β‐hydroxymethyl‐γ‐butyrolactone (2). Loss of ketene ([M + H ?42]+) is the major fragmentation process for protonated β‐acetoxymethyl‐γ‐butyrolactone (4), but not for β‐acetoxymethylbutenolide (3). The benzyl cation (m/z 91) is the major ion in the ESI‐MS/MS spectra of β‐benzyloxymethylbutenolide (5) and β‐benzyloxymethyl‐γ‐butyrolactone (6). The different side chain at the β‐position and the double bond presence afforded some product ions that can be important for the structural identification of each compound. The energetic aspects involved in the protonation and gas‐phase fragmentation processes were interpreted on the basis of thermochemical data obtained by computational quantum chemistry. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
A promising strategy for mediating protein–protein interactions is the use of non‐peptidic mimics of secondary structural protein elements, such as the α‐helix. Recent work has expanded the scope of this approach by providing proof‐of‐principle scaffolds that are conformationally biased to mimic the projection of side‐chains from one face of another common secondary structural element—the β‐strand. Herein, we present a synthetic route that has key advantages over previous work: monomers bearing an amino acid side‐chain were pre‐formed before rapid assembly to peptidomimetics through a modular, iterative strategy. The resultant oligomers of alternating pyridyl and six‐membered cyclic ureas accurately reproduce a recognition domain of several amino acid residues of a β‐strand, demonstrated herein by mimicry of the i, i+2, i+4 and i+6 residues.  相似文献   

6.
Double helices are not common in polypeptides and proteins except in the peptide antibiotic gramicidin A and analogous l,d ‐peptides. In contrast to natural polypeptides, remarkable β‐double‐helical structures from achiral γ‐peptides built from α,β‐unsaturated γ‐amino acids have been observed. The crystal structures suggest that they adopted parallel β‐double helical structures and these structures are stabilized by the interstrand backbone amide H‐bonds. Furthermore, both NMR spectroscopy and fluorescence studies support the existence of double‐helical conformations in solution. Although a variety of folded architectures featuring distinct H‐bonds have been discovered from the β‐ and γ‐peptide foldamers, this is the first report to show that achiral γ‐peptides can spontaneously intertwine into β‐double helical structures.  相似文献   

7.
The single‐crystal X‐ray diffraction analysis of a β,γ‐hybrid model peptide Boc‐β‐Ala‐γ‐Abu‐NH2 revealed the existence of four crystallographically independent molecules ( A , B , C and D conformers) in the asymmetric unit. The analysis revealed that unusual β‐turn‐like folded structures predominate, wherein the conformational space of non‐proteinogenic β‐Ala and γ‐Abu residues are restricted to gauchegaucheskew and skewgauchetransskew orientations, respectively. Interestingly, the U‐shaped conformers are seemingly stabilised by an effective unconventional C? H ??? O intramolecular hydrogen bond, encompassing a non‐covalent 14‐membered ring‐motif. Taking into account the signs of torsion angles, these conformers could be grouped into two distinct categories, A / B and C / D , establishing the incidence of non‐superimposable stereogeometrical features across a non‐chiral one‐component peptide model system, that is, “mirror‐image‐like” relationships. The natural occurrence of β‐Ala and γ‐Abu entities in various pharmacologically important molecules, coupled with their biocompatibilities, highlight how the non‐functionalised β,γ‐hybrid segment may offer unique advantages for introducing and/or manipulating a wide spectrum of biologically relevant hydrogen bonded secondary structural mimics in short synthetic peptides.  相似文献   

8.
Galactosaminogalactan (GAG) is a prominent cell wall component of the opportunistic fungal pathogen Aspergillus fumigatus. GAG is a heteropolysaccharide composed of α‐1,4‐linked galactose, galactosamine and N‐acetylgalactosamine residues. To enable biochemical studies, a library of GAG‐fragments was constructed featuring specimens containing α‐galactose‐, α‐galactosamine and α‐N‐acetyl galactosamine linkages. Key features of the synthetic strategy include the use of di‐tert‐butylsilylidene directed α‐galactosylation methodology and regioselective benzoylation reactions using benzoyl‐hydroxybenzotriazole (Bz‐OBt). Structural analysis of the Gal, GalN and GalNAc oligomers by a combination of NMR and MD approaches revealed that the oligomers adopt an elongated, almost straight, structure, stabilized by inter‐residue H‐bonds, one of which is a non‐conventional C?H???O hydrogen bond between H5 of the residue (i+1) and O3 of the residue (i). The structures position the C‐2 substituents almost perpendicular to the oligosaccharide main chain axis, pointing to the bulk solvent and available for interactions with antibodies or other binding partners.  相似文献   

9.
A simple, unsaturated, EZ photoisomerizable β‐amino acid, (Z)‐3‐aminoprop‐2‐enoic acid, has been introduced into peptide foldamers through a one‐pot chemical coupling, based on Pd/Cu‐catalyzed olefin oxidative amidation, between two peptide segments carrying, respectively, a ‐Gly‐NH2 residue at the C‐terminus and an acryloyl group at the N‐terminus. Reversible conversion between the Z and E configurations of the 3‐aminoprop‐2‐enoic linkage was achieved photochemically. A crystallographic analysis on two model compounds shed light on the consequences, in terms of 3D structure and self‐association properties, brought about by the different configuration of the unsaturated linkage. As a proof of concept, EZ photoisomerization of a 3‐aminoprop‐2‐enoic acid residue, inserted as the junction between two conformationally distinct peptide domains (one helical while the other β‐sheet promoter), allowed supramolecular self‐association to be reversibly turned on/off.  相似文献   

10.
A new three‐residue turn in β peptides nucleated by a 12/10‐mixed helix is presented. In this design, β peptides were derived from the 1:1 alternation of C‐linked carbo‐β‐amino acid ester [BocNH‐(R)‐β‐Caa(r)‐OMe] (Boc=tert‐butyloxycarbonyl), which consisted of a D ‐ribo furanoside side chain, and β‐hGly residues. The hexapeptide with (R)‐β‐Caa(r) at the N terminus showed the ‘turn’ stabilized by a 14‐membered NH(4) ??? CO(6) hydrogen bond at the C terminus nucleated by a robust 12/10‐mixed helix, thus providing a ‘helix‐turn’ (HT) motif. The turn and the helix were additionally stabilized by intraresidue electrostatic interaction between the furan oxygen in the carbohydrate side chain and NH in the backbone. However, the hexapeptide with a β‐hGly residue at the N terminus demonstrated the presence of a 10/12 helix through its entire length, which again showed the intraresidue interaction between NH and furan oxygen. The intraresidue NH ??? O? Me electrostatic interactions observed in the monomer, however, were absent in the peptides.  相似文献   

11.
The optically active β‐hydroxyl‐γ‐butyrolactones were synthesized from nonchiral starting material by employing reductive cleavage reaction, sharpless asymmetric epoxidation and dihydroxylation, and Lewis acid‐catalysed cyclization as key steps. This strategy can be used to prepare many chiral β‐hydroxyl‐γ‐butyrolactone analogues.  相似文献   

12.
Peptide‐mediated self‐assembly is a prevalent method for creating highly ordered supramolecular architectures. Herein, we report the first example of orthogonal C?X???X?C/C?X???π halogen bonding and hydrogen bonding driven crystalline architectures based on synthetic helical peptides bearing hybrids of l ‐sulfono‐γ‐AApeptides and natural amino acids. The combination of halogen bonding, intra‐/intermolecular hydrogen bonding, and intermolecular hydrophobic interactions enabled novel 3D supramolecular assembly. The orthogonal halogen bonding in the supramolecular architecture exerts a novel mechanism for the self‐assembly of synthetic peptide foldamers and gives new insights into molecular recognition, supramolecular design, and rational design of biomimetic structures.  相似文献   

13.
The controlled secondary self‐assembly of amphiphilic molecules in solution is theoretically and practically significant in amphiphilic molecular applications. An amphiphilic β‐cyclodextrin (β‐CD) dimer, namely LA‐(CD)2, has been synthesized, wherein one lithocholic acid (LA) unit is hydrophobic and two β‐CD units are hydrophilic. In an aqueous solution at room temperature, LA‐(CD)2 self‐assembles into spherical micelles without ultrasonication. The primary micelles dissociates and then secondarily form self‐assemblies with branched structures under ultrasonication. The branched aggregates revert to primary micelles at high temperature. The ultrasound‐driven secondary self‐assembly is confirmed by transmission electron microscopy, dynamic light scattering, 1H NMR spectroscopy, and Cu2+‐responsive experiments. Furthermore, 2D NOESY NMR and UV/Vis spectroscopy results indicate that the formation of the primary micelles is driven by hydrophilic–hydrophobic interactions, whereas host–guest interactions promote the formation of the secondary assemblies. Additionally, ultrasonication is shown to be able to effectively destroy the primary hydrophilic–hydrophobic balances while enhancing the host–guest interaction between the LA and β‐CD moieties at room temperature.  相似文献   

14.
The structure of the title compound, C17H16OS, is primarily stabilized by T‐shaped and parallel‐displaced aromatic clusters. The distances between the centroids of the aromatic pairs are in the range 4.34–5.30 Å. In the crystal packing, the mol­ecules dimerize by means of π–π interactions of both face‐to‐face and edge‐to‐face types, and the aromatic rings associate in a cyclic edge‐to‐face tetrameric arrangement of the herring‐bone type. These herring‐bone interactions appear to insulate hydrogen‐bond interactions in the crystal structure.  相似文献   

15.
“Stapled” peptides are typically designed to replace two non‐interacting residues with a constraining, olefinic staple. To mimic interacting leucine and isoleucine residues, we have created new amino acids that incorporate a methyl group in the γ‐position of the stapling amino acid S5. We have incorporated them into a sequence derived from steroid receptor coactivator 2, which interacts with estrogen receptor α. The best peptide (IC50=89 nm ) replaces isoleucine 689 with an S‐γ‐methyl stapled amino acid, and has significantly higher affinity than unsubstituted peptides (390 and 760 nm ). Through X‐ray crystallography and molecular dynamics studies, we show that the conformation taken up by the S‐γ‐methyl peptide minimizes the syn‐pentane interactions between the α‐ and γ‐methyl groups.  相似文献   

16.
Tetrameric H10/12 helix stabilization was achieved by the application of aromatic side‐chains in β‐peptide oligomers by intramolecular backbone–side chain CH–π interactions. Because of the enlarged hydrophobic surface of the oligomers, a further aim was the investigation of the self‐assembly in a polar medium for the β‐peptide H10/12 helices. NMR, ECD, and molecular modeling results indicated that the oligomers formed by cis‐[1S,2S]‐ or cis‐[1R,2R]‐1‐amino‐1,2,3,4‐tetrahydronaphthalene‐2‐carboxylic acid (ATENAC) and cis‐[1R,2S]‐ or cis‐[1S,2R]‐2‐aminocyclohex‐3‐enecarboxylic acid (ACHEC) residues promote stable H10/12 helix formation with an alternating backbone configuration even at the tetrameric chain length. These results support the view that aromatic side‐chains can be applied for helical structure stabilization. Importantly, this is the first observation of a stable H10/12 helix with tetrameric chain‐length. The hydrophobically driven self‐assembly was achieved for the helix‐forming oligomers, seen as vesicles in transmission electron microscopy images. The self‐association phenomenon, which supports the helical secondary structure of these oligomers, depends on the hydrophobic surface area, because a higher number of aromatic side‐chains yielded larger vesicles. These results serve as an essential element for the design of helices relating to the H10/12 helix. Moreover, they open up a novel area for bioactive foldamer construction, while the hydrophobic area gained through the aromatic side‐chains may yield important receptor–ligand interaction surfaces, which can provide amplified binding strength.  相似文献   

17.
The hybrid βγ dipeptide, methyl 2‐[1‐({2‐[(tert‐butoxycarbonyl)amino]benzamido}methyl)cyclohexyl]acetate (Boc‐Ant‐Gpn‐OMe), C22H32N2O5, adopts a folded conformation stabilized by intramolecular six‐ (C6) and seven‐membered (C7) hydrogen‐bonded rings, together with weak C—H...O and C—H...π interactions, resulting in a ribbon‐like structure.  相似文献   

18.
The previously described chiral 2‐acyloxathianes 5 (Scheme I) are used in two different enantioselective syntheses of γ‐butyrolactones. In one synthesis, Grignard addition, cleavage and reduction to carbinols RR'C(OH)CH2OH is followed by tosylation, malonate homologation, lactonization, and removal of the carbomethoxy group to give optically active γ‐lactones. A modification of this synthesis (Scheme I) leads to optically active α‐methylene‐γ‐lactones. In the second synthesis, reaction of a bromomagnesium enolate with ketones 5 leads to β‐hydroxyesters, which, by appropriate sequences of reduction and cleavage (Scheme II) are converted to optically active α‐ or β‐hydroxy‐γ‐lactones.  相似文献   

19.
π‐Conjugated thienylene? phenylene oligomers with fluorinated and dialkoxylated phenylene fragments have been designed and prepared to understand the interactions in fragment orbitals, the influence of the substituents (F, OMe) on the HOMO–LUMO gap, and the role of intramolecular non‐covalent cumulative interactions in the construction of π‐conjugated nanostructures. Their strong conjugation was also evidenced in the gas phase by UV photoelectron spectroscopy and theoretical calculations. These results can be explained by the crucial role of the relative energetic positions of the π orbitals of the dimethoxyphenylene, which was used to model the dialkoxyphenylene entity, in determining the π/π* orbital levels of the fluorinated phenylene entity. Dialkoxyphenylenes raise the HOMO orbitals, whereas fluorinated phenylenes lower the LUMO orbitals in the oligomers. In addition, the presence of S???F and H???F interactions in the fluorinated phenylene? thienylene compounds add to the S???O interactions in the mixed targets and contribute to the full conjugation in the oligomer, inducing weak inter‐ring angles between the involved aromatic cycles. These results, which showed extended conjugation of the π system, were corroborated by a narrow HOMO–LUMO gap (according to DFT calculations) and by a relatively strong maximum wavelength (as obtained by TD‐DFT calculations and experimental UV/Vis measurements). The crystallographic data of two mixed thienylene? (fluorinated and dialkoxylated phenylene) five‐ring oligomers agree with the above results and show the formation of quasi‐planar conformations with non‐covalent S???O, H???F, and S???F interactions. These studies in the solid and gas phases show the relevance of associating dialkoxyphenylene and fluorinated phenylene fragments with thiophene to lead to oligomers with improved electronic delocalization for electronic or optoelectronic devices.  相似文献   

20.
The incorporation of the β‐amino acid residues into specific positions in the strands and β‐turn segments of peptide hairpins is being systematically explored. The presence of an additional torsion variable about the C(α) C(β) bond (θ) enhances the conformational repertoire in β‐residues. The conformational analysis of three designed peptide hairpins composed of α/β‐hybrid segments is described: Boc‐Leu‐Val‐Val‐DPro‐β Phe ‐Leu‐Val‐Val‐OMe ( 1 ), Boc‐Leu‐Val‐β Val ‐DPro‐Gly‐β Leu ‐Val‐Val‐OMe ( 2 ), and Boc‐Leu‐Val‐β Phe ‐Val‐DPro‐Gly‐Leu‐β Phe ‐Val‐Val‐OMe ( 3 ). 500‐MHz 1H‐NMR Analysis supports a preponderance of β‐hairpin conformation in solution for all three peptides, with critical cross‐strand NOEs providing evidence for the proposed structures. The crystal structure of peptide 2 reveals a β‐hairpin conformation with two β‐residues occupying facing, non‐H‐bonded positions in antiparallel β‐strands. Notably, βVal(3) adopts a gauche conformation about the C(α) C(β) bond (θ=+65°) without disturbing cross‐strand H‐bonding. The crystal structure of 2 , together with previously published crystal structures of peptides 3 and Boc‐β Phe ‐β Phe ‐DPro‐Gly‐β Phe ‐β Phe ‐OMe, provide an opportunity to visualize the packing of peptide sheets with local ‘polar segments' formed as a consequence of reversal peptide‐bond orientation. The available structural evidence for hairpins suggests that β‐residues can be accommodated into nucleating turn segments and into both the H‐bonding and non‐H‐bonding positions on the strands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号