首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chlorophyll fluorescence and the photosynthetic oxygen evolution (flash-induced oxygen yield patterns and oxygen bursts under continuous irradiation) were investigated in the thylakoid membranes with different stoichiometry and organization of the chlorophyll-protein complexes. Data show that the alteration in the organization of the photosystem II (PS II) super complex, i.e. the amount and the organization of the light-harvesting chlorophyll a/b protein complex (LHCII), which strongly modifies the electric properties of the membranes, influences both the energy redistribution between the two photosystems and the oxygen production reaction. The decrease of surface electric parameters (charge density and dipole moments), associated with increased degree of LHCII oligomerization, correlates with the strong reduction of the energy transfer from PS II to PSI. In the studied pea thylakoid membranes (wild types Borec, Auralia and their mutants Coeruleovireus 2/16, Costata2/133, Chlorotica XV/1422) with enhanced degree of oligomerization of LHCII was observed: (i) an increase of the S(0) populations of PS II in darkness; (ii) an increase of the misses; (iii) an alteration of the decay kinetics of the oxygen bursts under continuous irradiation. There is a strict correlation between the degree of LHCII oligomerization in the investigated pea mutants and the ratio of functionally active PS II alpha to PS II beta centers, while in thylakoid membranes without oligomeric structure of LHCII (Chlorina f2 barley mutant) the PS II alpha centers are not registered.  相似文献   

2.
The chlorophyll fluorescence, photochemical activity and surface electric properties of thylakoid membranes with different stoichiometry of pigment-protein complexes and organization of the light-harvesting chlorophyll a/b protein complex of photosystem II (LHCII) were studied in the presence of substituted 1,4-anthraquinones. Data show strong dependence of the quenching of the chlorophyll fluorescence on the structural organization of LHCII. The increase of the LHCII oligomerization, which is associated with significant reduction of the transmembrane electric charge asymmetry and electric polarizability of the membrane, correlates with enhanced quenching effect of substituted 1,4-athraquinones. Crucial for the large quinone-induced changes in the membrane electric dipole moments is the structure of the quinone molecule. The strongest reduction in the values of the dipole moments is observed after interaction of thylakoids with 3-chloro-9-hydroxy-1,4-anthraquinone (TF33) which has the highest quenching efficiency. The quinone induced changes in the photochemical activity of photosystem II (PSII) correlate with the total amount of the supramolecular LHCII-PSII complex and depend on the number of substituents in the 1,4-anthraquinone molecule.  相似文献   

3.
Electric light scattering and microelectrophoresis were applied to investigate the electric moments (permanent dipole moment and electric polarizability and electrophoretic mobility of envelope-free chloroplasts and photosystem II (PS II particles. The effect of the removal of the extrinsic polypeptides (18, 24 and 33 kDa) on the electric moments was also studied. A significant difference was observed between the orientation behaviour of chloroplasts and PS II preparations. The data indicate that the permanent and induced dipole moments contribute to the orientation of the PS II particles, whereas chloroplasts possess induced dipole moment only.

NaCl and Tris treatments of PS II preparations influence both the transverse permanent dipole moment and the electric polarizability of PS II particles. The increase in the electrophoretic mobility of PS II particles on removal of the extrinsic proteins corresponds to an increase in the electric polarizability value, demonstrating its interfacial nature.  相似文献   


4.
The effects of ultraviolet-B light on the level and steady-state phosphorylation of photosystem II proteins have been studied in barley wild type and its chlorophyll b-less mutant chlorina f2. In the wild type, ultraviolet-B radiation is found to promote dephosphorylation of all thylakoid phosphoproteins. In addition, for reaction-centre proteins D1 and D2, dephosphorylation is paralleled by degradation. Photosystem II core proteins in the mutant are not found to be significantly phosphorylated in any experimental conditions, and loss of D1 and D2 reaction-centre proteins is slightly faster than in the wild type. These results are consistent with the possibility that phosphorylation of reaction-centre proteins affects their stability, possibly by slowing down the rate of degradation, as in the case of visible light.  相似文献   

5.
To explore the possible effect of phosphatidylglycerol (PG) on the surface electric properties and chlorophyll fluorescence characteristics we used electric light scattering technique and 77 K chlorophyll fluorescence of thylakoid membranes from a cyanobacterium, Synechocystis PCC6803 (wild type) and its pgsA mutant defective in PG synthesis. We found a strong decrease in the permanent and induced electric dipole moments of the mutant thylakoids, following long-term PG depletion parallel with a decrease of the emission peak from PSI and an increase of the emission peak from PSII. Partial recovery of the electric state of thylakoid membranes was observed at re-addition of PG to the mutant cells depleted of PG for 21days. This change in the electric dipole moments is probably due to a decrease in PG content and progressive structural alterations in the macroorganization of the photosynthetic complexes induced by PG deprivation.

Our results suggest that the depletion of a lipid, which carries a negative charge, despite its small contribution to the overall lipid content, significantly perturbs the surface charge of the membranes. These changes are related with the chlorophyll fluorescence emission ratios of two photosystems and may partly explain our earlier results concerning the PG requirement for the function and assembly of photosystems I and II reaction centers.  相似文献   


6.

A comparative study of the photoreducing potentials of spinach thylakoid membranes and spinach photosystem II particles has been made. Hexachloroplatinate ions have been used as electron acceptors in a Hill-like assay for oxygen evolution measurements with both thylakoid membranes and photosystem II particles. However, unlike other Hill acceptors, such as ferricyanide, hexachloroplatinate can be fully reduced to metallic platinum that is catalytically active for hydrogen evolution. This is experimentally confirmed in the ability of chloroplast membranes to photoprecipitate platinum and photoproduce molecular hydrogen. Although similar experiments with photosystem II particles resulted in hexachloroplatinate-supported oxygen evolution, hydrogen evolution was not observed. Moreover, photosystem II particles coupled to ferredoxin and hydrogenase resulted in neither hydrogen nor oxygen evolution—a distinct contrast to the results obtained with chloroplast membranes.

  相似文献   

7.
This paper presents the results of a study performed to develop a rapid and straightforward method to resolve and simultaneously identify the light-harvesting proteins of photosystem I (LHCI) and photosystem II (LHCII) present in the grana and stroma of the thylakoid membranes of higher plants. These hydrophobic proteins are embedded in the phospholipid membrane, and their extraction usually requires detergent and time consuming manipulations that may introduce artifacts. The method presented here makes use of digitonin, a detergent which causes rapid (within less than 3 min) cleavage of the thylakoid membrane into two subfractions: appressed (grana) and non-appressed (stroma) membranes, the former enriched in photosystem II and the latter containing mainly photosystem I. From these two fractions identification of the protein components was performed by separating them by reversed-phase high-performance liquid chromatography (RP-HPLC) and determining the intact molecular mass by electrospray ionization mass spectrometry (ESI-MS). By this strategy the ion suppression during ESI-MS that normally occurs in the presence of membrane phospholipids was avoided, since RP-HPLC removed most phospholipids from the analytes. Consequently, high quality mass spectra were extracted from the reconstructed ion chromatograms. The specific cleavage of thylakoid membranes by digitonin, as well as the rapid identification and quantification of the antenna composition of the two complexes facilitate future studies of the lateral migration of the chlorophyll-protein complexes along thylakoid membranes, which is well known to be induced by high intensity light or other environmental stresses. Such investigations could not be performed by sodium dodecylsulfate-polyacrylamide gel electrophoresis because of insufficient resolution of the proteins having molecular masses between 22,000 and 25,000.  相似文献   

8.
Low-temperature (77K) steady-state chlorophyll fluorescence emission spectra, room temperature fluorescence and light scattering of thylakoid membranes isolated from pea mutants were studied as a function of Mg2+ concentration. The mutants have modified pigment content and altered structural organization of the pigment-protein complexes, distinct surface electric properties and functions. The analysis of the 77K emission spectra revealed that Mg2+-depletion of the medium caused not only an increased energy flow toward photosystem I in all investigated membranes but also changes in the quenching of the fluorescence, most probably by internal conversion. The results indicated that the macroorganization of the photosynthetic apparatus of mutants at supramolecular level (distribution and segregation of two photosystems in thylakoid membranes) and at supermolecular level (stacking of photosystem II supercomplexes) required different Mg ion concentrations. The data confirmed that the segregation of photosystems and the stacking of thylakoid membranes are two distinct phenomena and elucidated some features of their mechanisms. The segregation is initiated by changes in the lateral microorganization of light harvesting complexes II, their migration (repulsion from photosystem I) and subsequent separation of the two photosystems. Most likely 3D aggregation and formation of macrodomains, containing only photosystem II antenna complexes, play a certain precursory role for the increasing degree of the membrane stacking and the energy coupling between the light harvesting complexes II and the core complexes of photosystem II in the frame of photosystem II supercomplexes.  相似文献   

9.
Abstract— The mechanisms of orientation in pulsed and alternating electric fields of thylakoids (derived from the sonication of spinach chloroplasts) and of light-harvesting chlorophyll a/b-protein complexes (CPII) were investigated by utilizing linear dichroism techniques. Comparisons of the linear dichroism spectra of thylakoids and CPII particles suggest that the latter are oriented with their directions of largest electronic polarizabilities (and thus probably their largest dimensions) within the thylakoid membrane planes. At low electric field strengths (< 12 V cm?1), and at low frequencies of alternating electric fields (< 0.25 Hz), thylakoid membranes tend to align with their normals parallel to the direction of the applied electric field; the mechanism of orientation involves a permanent dipole moment of the thylakoids which is oriented perpendicular to the planes of the membranes. However, at high field strengths and high frequencies of the applied alternating electric fields, the thylakoids tend to orient with their planes parallel to the applied field, thus exhibiting an inversion of the sign of the linear dichroism as the electric field strength is increased. At the higher frequencies and at higher field strengths, the orientation mechanisms of the thylakoids involve induced dipole moments related to anisotropies in the electronic polarizabilities. The polarizability is higher within the plane than along a normal to the plane, thus accounting for the inversion of the dichroism as the electric field strength is increased. The CPII particles align with their largest dimension parallel to the applied field at all field strength, indicating that the induced dipole moment dominates the orientation mechanisms in pulsed electric fields. The magnitude of the absolute linear dichroism of CPII suspensions increases with increasing dilution, indicating that aggregates of lower symmetry are formed at higher concentrations of the CPII complexes.  相似文献   

10.
Abstract Two functionally different species of violaxanthin have been observed in thylakoid membranes, one that can be de-epoxidised to zeaxanthin under light and one not available for light-induced zeaxanthin formation (Siefermann, D. and H. Y. Yamamoto, 1974, Biochim. Biophys. Acta 357 , 144–150). Here the distribution of available and unavailable violaxanthin is examined between membrane subfractions obtained from Triton X-100 solubilized spinach thylakoids by isoelectric focusing: (1) Only 40% of the available violaxanthin is detected in isolated Chl-proteins, while the residual 60% occur in a fraction of'free'pigments; (2) Almost 80% of the unavailable violaxanthin is recovered from the light-harvesting Chl a/b -protein complex (36%) and from photochemically active complexes containing photosystem I (20%) or photosystem II (20%). The results suggest a heterogenous organization of available and unavailable violaxanthin in thylakoid membranes.  相似文献   

11.
-Thermoluminescence emission at 110 K (Z-band) was markedly diminished when thylakoid membranes were exposed to red light during or after Z-band charging with blue light. Analysis of this phenomenon showed that deactivation of Z-band-emitting chlorophyll species occurred preferentially on the low temperature side of the glow curve, and red light of670–680 nm was most efficient in the deactivation. In order to test our hypothesis that this detrapping is related to local heating effects caused by dissipation of absorbed energy, we measured thermoluminescence glow curves and Z-band emission spectra from spinach leaf discs and thylakoid membranes during induction of nonphotochemical chlorophyll fluorescence quenching. Pretreatment of the plant material was designed to achieve different levels of (1) de-epoxidized xanthophylls in the photosynthetic apparatus and (2) the proton concentration in the thylakoid lumen. In comparison, measurements were performed in aggregated and trimeric light-harvesting pigment-protein complexes of photosystem II. We observed on all three levels of organization that a higher capacity of excitation energy dissipation was accompanied by a stronger red light-induced detrapping of Z-band thermoluminescence.  相似文献   

12.
13.
DCMU-induced stimulation of the rate of photosystem I (PS I) electron transport in DCIPH2→ MV photoreaction occurs through the action of DCMU on the rate-limiting step which contains the site of electron donation of DCIPH2 (Ramanujam et al. , 1981). The magnitude of stimulation of the rate by 50 μ M DCMU decreased with increasing concentration of chlorophyll (Chl), implying that DCMU is stoichiometrically related to Chl with respect to the stimulation of the PS I rate.
DCMU-induced stimulation was sensitive to the ionic condition of the thylakoids, the effect being reduced at low cation concentration. Cation-induced scattering changes in thylakoid suspension were partially reversed by DCMU, and the percent Chl in the 10 K fraction of the thylakoid decreased upon addition of DCMU, indicating that grana structure is disrupted by DCMU. Hydroquinone-mediated reduction of cytochrome f in thylakoids in the dark was accelerated in the presence of DCMU. The DCMU effect was not observed in isolated PS I particles.
It is concluded that DCMU binds to the thylakoid membranes and brings about structural changes leading to unstacking of the thylakoids accompanied by an altered interaction of the electron transfer chain components with the added electron donor. This binding of DCMU must have an affinity lower than the well-known binding of DCMU to photosystem II (PS II), because the concentration required is markedly higher.  相似文献   

14.
The kinetics of chlorophyll photobleaching were followed in whole thylakoid membranes as well as in photosystem I and photosystem II submembrane fractions. The onset of photobleaching was characterized by a slow rate which indicated the presence of energy traps implicated in the photoprotection of the bulk pigments. The pigments in photosystem I submembrane fractions bleached at a faster rate than those in photosystem II counterparts, the latter being more sensitive towards photoinhibition. An analysis of the pigment-protein complexes isolated from whole thylakoid membranes during the course of a photobleaching experiment has shown that the core-antenna complexes, including CP29, are more sensitive to illumination than the peripheral complexes. The absorption spectra of the CPI and CP29 complexes presented a blue shift of the red absorption maximum after partial photobleaching, indicative of a non-homogeneous bleaching of the holochromes in these complexes. An analysis of these data points towards the involvement of CP29 in a photoprotection mechanism at the level of photosystem II. The weaker resistance of photosystem I to photobleaching relative to photosystem II and its stronger resistance to photoinhibition is discussed in terms of an energy dissipation pathway in thylakoid membranes.  相似文献   

15.
Cells of characean algae exposed to illumination arrange plasma-membrane H(+) fluxes and photosynthesis in coordinated spatial patterns (bands). This study reveals that H(+) transport and photosynthesis patterns in these excitable cells are affected not only by light conditions but also by electric excitation of the plasma membrane. It is shown that generation of action potential (AP) temporally eliminates alkaline bands, suppresses O(2) evolution, and differentially affects primary reactions of photosystem II (PSII) in different cell regions. The quantum yield of PSII electron transport decreased after AP in the alkaline but not in acidic cell regions. The effects of electric excitation on fluorescence and the PSII electron flow were most pronounced at light-limiting conditions. Evidence was obtained that the shift in chlorophyll fluorescence after AP is due to the increase in DeltapH at thylakoid membranes. It is concluded that the AP-triggered pathways affecting ion transport and photosynthetic energy conversion are linked but not identical.  相似文献   

16.
To study organization of the main light-harvesting chlorophyll a/b-protein complex of photosystem II (LHCII) from spinach thylakoid membranes at the level of trimeric subcomplexes, we have applied non-denaturing isoelectric focusing (ndIEF) in vertical, slab polyacrylamide gels. When analyzed by two consecutive ndIEF/electroelution runs, spinach BBY membrane preparations (PSII(alpha)-enriched, stacked thylakoid membranes) were resolved into nine fractions of 100% purity, labelled 1-9 in order of decreasing pI values. Seven of these fractions (3-9) were shown by absorption spectroscopy to stand for LHCII subcomplexes. The subcomplexes were established - by monitoring their circular dichroism spectra and comparing them to the spectra of native LHCII trimers and monomers - to be structurally intact trimers. The analysis of polypeptide composition of the subcomplexes in terms of apparent molecular masses and Lhcb genes' products led us to the conclusion that each of the subcomplexes might be a mixed population of closely similar individual trimers, comprising of permutations of Lhcb1 and Lhcb2 (subcomplexes 3-7) or Lhcb1, Lhcb2 and Lhcb3 (subcomplexes 8 and 9).  相似文献   

17.
Photosystem II is a multisubunit membrane complex which performs the water oxidation process in the higher plants. Core dimers and monomers of photosystem II have been isolated from thylakoid membranes by sucrose density gradient centrifugation. Lipids extracted from different photosystem II-enriched fractions obtained from spinach thylakoids have been analysed by thin layer chromatography. Cardiolipin is enriched throughout the purification of photosystem II complexes; in particular dimers contained two times more cardiolipin than their monomeric counterparts.  相似文献   

18.
PHOTOSYSTEM II HETEROGENEITY IN THE MARINE DIATOM Phaeodactylum tricornutum   总被引:1,自引:0,他引:1  
Abstract— The kinetics of photosystem II photochemistry are analyzed in the marine diatom Phaeodacfylum tricornutum by measurement of fluorescence induction in cell suspensions treated with 3–(3,4-dichlorophenyl)-1,1-dimethylurea. Photosystem II kinetics are found to be biphasic, the sum of two exponential components, suggesting that biphasic energy conversion in photosystem II may be a general consequence of thylakoid membrane appression. The emission wavelength-dependence of fluorescence induction suggests that the two photosystem II components have different variable fluorescence emission spectra. The slower component exhibits characteristic emission of the diatom light-harvesting complexes while emission from the faster component resembles that of the photosystem II reaction center. Variable fluorescence emission (293 K) at wavelengths > 700 nm is assigned to photosystem II. Application of model equations indicates that the two photosystem II unit types differ primarily in antenna size. A new analytical procedure is presented which eliminates ambiguities in the kinetic analysis associated with the incorrect assignment of the maximal fluorescence yield.  相似文献   

19.
Polyclonal antibodies against four different apoproteins of either the chlorophyll (Chl) a/b light-harvesting antenna of photosystem I or II, or a chlorophyll-protein complex homologous to CP26 from Chlamydomonas reinhardtii, crossreact with11–13 thylakoid proteins of Chlamydomonas, Euglena gracilis and higher plants. The number of antigenically-related proteins correlates with the quantity of light-harvesting chlorophyll-protein complex (LHC) gene types that have been sequenced in higher plants. The antibodies also react specifically with Chi a/c-binding proteins of three diatoms and Coccolithophora sp. as determined by immunoblot and Ouchterlony assays. Four to six crossreacting proteins are observed in each chromophyte species and a functional role for some can be deduced by antibody reactivity. It appears that despite major differences in the structures of their pigment ligands, at least some domains of Chl-binding LHC apoproteins have been conserved during their evolution, possibly functioning in protein: protein, as opposed to pigment: protein, interactions in photosynthetic membranes.  相似文献   

20.
The low-temperature (77 K) emission and excitation chlorophyll fluorescence spectra in thylakoid membranes isolated from pea mutants were investigated. The mutants have modified pigment content, structural organization, different surface electric properties and functions [Dobrikova et al., Photosynth. Res. 65 (2000) 165]. The emission spectra of thylakoid membranes were decomposed into bands belonging to the main pigment protein complexes. By an integration of the areas under them, the changes in the energy distribution between the two photosystems as well as within each one of them were estimated. It was shown that the excitation energy flow to the light harvesting, core antenna and RC complexes of photosystem II increases with the total amount of pigments in the mutants, relative to the that to photosystem I complexes. A reduction of the fluorescence ratio between aggregated trimers of LHC II and its trimeric and monomeric forms with the increase of the pigment content (chlorophyll a, chlorophyll b, and lutein) was observed. This implies that the closer packing in the complexes with a higher extent of aggregation regulates the energy distribution to the PS II core antenna and reaction centers complexes. Based on the reduced energy flow to PS II, i.e., the relative increased energy flow to PS I, we hypothesize that aggregation of LHC II switches the energy flow toward LHC I. These results suggest an additive regulatory mechanism, which redistributes the excitation energy between the two photosystems and operates at non-excess light intensities but at reduced pigment content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号