首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe a new vector discrete ordinate radiative transfer model with a full linearization facility. The VLIDORT model is designed to generate simultaneous output of Stokes vector light fields and their derivatives with respect to any atmospheric or surface property. We develop new implementations for the linearization of the vector radiative transfer solutions, and go on to show that the complete vector discrete ordinate solution is analytically differentiable for a stratified multilayer multiply scattering atmospheric medium. VLIDORT will generate all output at arbitrary viewing geometry and optical depth. The model has the ability to deal with attenuation of solar and line-of-sight paths in a curved atmosphere, and includes an exact treatment of the single scatter computation. VLIDORT also contains a linearized treatment for non-Lambertian surfaces. A number of performance enhancements have been implemented, including a facility for multiple solar zenith angle output. The model has been benchmarked against established results in the literature.  相似文献   

2.
We present a general approach for the linearization of radiative transfer in a spherical planetary atmosphere. The approach is based on the forward-adjoint perturbation theory. In the first part we develop the theoretical background for a linearization of radiative transfer in spherical geometry. Using an operator formulation of radiative transfer allows one to derive the linearization principles in a universally valid notation. The application of the derived principles is demonstrated for a radiative transfer problem in simplified spherical geometry in the second part of this paper. Here, we calculate the derivatives of the radiance at the top of the atmosphere with respect to the absorption properties of a trace gas species in the case of a nadir-viewing satellite instrument.  相似文献   

3.
A vector radiative transfer model has been developed for a coupled atmosphere-ocean system. The radiative transfer scheme is based on the discrete ordinate and matrix operator methods. The reflection/transmission matrices and source vectors are obtained for each atmospheric or oceanic layer through the discrete ordinate solution. The vertically inhomogeneous system is constructed using the matrix operator method, which combines the radiative interaction between the layers. This radiative transfer scheme is flexible for a vertically inhomogeneous system including the oceanic layers as well as the ocean surface. Compared with the benchmark results, the computational error attributable to the radiative transfer scheme has been less than 0.1% in the case of eight discrete ordinate directions. Furthermore, increasing the number of discrete ordinate directions has produced computations with higher accuracy. Based on our radiative transfer scheme, simulations of sun glint radiation have been presented for wavelengths of 670 nm and 1.6 μm. Results of simulations have shown reasonable characteristics of the sun glint radiation such as the strongly peaked, but slightly smoothed radiation by the rough ocean surface and depolarization through multiple scattering by the aerosol-loaded atmosphere. The radiative transfer scheme of this paper has been implemented to the numerical model named Pstar as one of the OpenCLASTR/STAR radiative transfer code systems, which are widely applied to many radiative transfer problems, including the polarization effect.  相似文献   

4.
Abstract

A pulse propagation of a vector electromagnetic wave field in a discrete random medium under the condition of Mie resonant scattering is considered on the basis of the Bethe–Salpeter equation in the two-frequency domain in the form of an exact kinetic equation which takes into account the energy accumulation inside scatterers. The kinetic equation is simplified using the transverse field and far wave zone approximations which give a new general tensor radiative transfer equation with strong time delay by resonant scattering. This new general radiative transfer equation, being specified in terms of the low-density limit and the resonant point-like scatterer model, takes the form of a new tensor radiative transfer equation with three Lorentzian time-delay kernels by resonant scattering. In contrast to the known phenomenological scalar Sobolev equation with one Lorentzian time-delay kernel, the derived radiative transfer equation does take into account effects of (i) the radiation polarization, (ii) the energy accumulation inside scatterers, (iii) the time delay in three terms, namely in terms with the Rayleigh phase tensor, the extinction coefficient and a coefficient of the energy accumulation inside scatterers, respectively (i.e. not only in a term with the Rayleigh phase tensor). It is worth noting that the derived radiative transfer equation is coordinated with Poynting's theorem for non-stationary radiation, unlike the Sobolev equation. The derived radiative transfer equation is applied to study the Compton–Milne effect of a pulse entrapping by its diffuse reflection from the semi-infinite random medium when the pulse, while propagating in the medium, spends most of its time inside scatterers. This specific albedo problem for the derived radiative transfer equation is resolved in scalar approximation using a version of the time-dependent invariance principle. In fact, the scattering function of the diffusely reflected pulse is expressed in terms of a generalized time-dependent Chandrasekhar H-function which satisfies a governing nonlinear integral equation. Simple analytic asymptotics are obtained for the scattering function of the front and the back parts of the diffusely reflected Dirac delta function incident pulse, depending on time, the angle of reflection, the mean free time, the microscopic time delay and a parameter of the energy accumulation inside scatterers. These asymptotics show quantitatively how the rate of increase of the front part and the rate of decrease of the rear part of the diffusely reflected pulse become slower with transition from the regime of conventional radiative transfer to that of pulse entrapping in the resonant random medium.  相似文献   

5.
In this paper, a numerical method is presented for the study of the radiative transfer in a two-dimensional graded index semitransparent medium with diffuse gray boundaries. The numerical method is a combination of the linear refractive index bar model, the discrete curved ray-tracing technique and the pseudo source adding method (LRIB-CRTP). In the traditional ray-tracing technique, it is difficult to deal with the diffuse gray boundary while solving the radiative transfer. Using the pseudo source adding method, the diffuse gray boundary of the medium can be treated as a black boundary. We have also studied the radiative equilibrium temperature field of the medium and analyzed the influence of some parameters involved. The results show that the directional discrete number is important for the medium having a large absorption coefficient. The results also show that the refractive index distribution greatly influences the temperature field, whereas the linear absorption coefficient distribution has little influence on the temperature field.  相似文献   

6.
This paper deals with heat transfer in non-grey semitransparent two-dimensional sample. Considering an homogeneous purely absorbing medium, we calculated the temperature field and heat fluxes of a material irradiated under a specific direction. Coupled radiative and conductive heat transfer were considered. The radiative heat transfer equation (RTE) was solved using a S8 quadrature and a discrete ordinate method. Reflection and absorption coefficients of the medium were calculated with the silica optical properties. The conduction inside the medium was linked to the RTE through the energy conservation. Validation of the model and two original cases are also presented.  相似文献   

7.
A new method for the solution of the radiative transfer equation in spherical media based on a modified discrete ordinates method is extended to study radiative, conductive and convective heat transfer in a semi-transparent scattering porous medium. The set of differential equations is solved using the fourth-order Runge-Kutta method. Various results are obtained for the case of combined radiative and conductive heat transfer, as well as for the interaction of those modes with convection. The effects of some radiative properties of the medium on the heat transfer rate are examined.  相似文献   

8.
The retrieval of atmospheric constituents from measurements of backscattered light requires a radiative transfer forward model that can simulate both intensities and weighting functions (partial derivatives of intensity with respect to atmospheric parameters being retrieved). The radiative transfer equation is solved in a multi-layer multiply-scattering atmosphere using the discrete ordinate method. In an earlier paper dealing with the upwelling top-of-the-atmosphere radiation field, it was shown that a full internal perturbation analysis of the plane-parallel discrete ordinate solution leads in a natural way to the simultaneous generation of analytically-derived weighting functions with respect to a wide range of atmospheric variables. In the present paper, a more direct approach is used to evaluate explicitly all partial derivatives of the intensity field. A generalization of the post-processing function is developed for the derivation of weighting functions at arbitrary optical depth and stream angles for both upwelling and downwelling directions. Further, a complete treatment is given for the pseudo-spherical approximation of the direct beam attenuation; this is an important extension to the range of viewing geometries encountered in practical radiative transfer applications. The numerical model LIDORT developed for this work is able to generate intensities and weighting functions for a wide range of retrieval scenarios, in addition to the passive remote sensing application from space. We present a number of examples in an atmosphere with O3 absorption in the UV, for satellite (upwelling radiation) and ground-based (downwelling radiation) applications. In particular, we examine the effect of various pseudo-spherical parameterizations on backscatter intensities and weighting functions with respect to O3 volume mixing ratio. In addition, the use of layer-integrated multiple scatter output from the model is shown to be important for satellite instruments with wide-angle off-nadir viewing geometries.  相似文献   

9.
Application of the discrete method to the radiative heat transfer in a two-dimensional grey medium of complex geometry. This paper describes a new approach in determining the radiative intensity and the temperature fields in a semi-transparent medium enclosed in a two-dimensional cavity the boundary surfaces of which are uniformly grey and purely isotropic diffuse reflectors, with the help of a new combination of ray tracing, finite volumes and discrete ordinates method. Since the grid used can be unstructured, the technique is applicable to the calculation of radiative transfer in enclosures of complex geometry. The basic equations are given, followed by results for cases of simple geometry compared with the exact solutions and the treatment of other cases of more complex geometry. The method eliminates oscillations in the intensity field and yields accurate results.  相似文献   

10.
The linearization of radiative transfer with respect to surface properties in the UV and visible part of the solar spectrum is presented. The proposed method is a rigorous extension of the radiative perturbation theory with respect to surface properties. Given the forward and adjoint intensity field, analytical expressions are provided for the linearization of any observable related to the radiation field with respect to surface properties characterized by Minnaert's and Lambertian bidirectional reflection distribution function. For the considered surface reflection characteristics, we also discuss an extension of the reduction approach of Chandrasekhar as an alternative linearization method. The suitability of both approaches for the combined retrieval of trace gas and surface properties from the backscattered sunlight in the UV and visible part of the spectrum is discussed. The authors come to the conclusion that the perturbation theory, for this purpose, represents the superior method because of its general applicability to any parameter characterizing the optical properties of the atmosphere and the underlying surface.  相似文献   

11.
12.
随着超短脉冲激光的快速发展,吸收散射性介质内的瞬态辐射传输引起了人们的广泛关注.本文基于离散坐标法和最小二乘有限元法(LSFEM),提出了模拟多维吸收散射性介质内瞬态辐射传输的数值模型.该模型有效地克服了在标准Galerkin有限元法(GFEM)中发生的伪振荡现象,在时间步长较大的情况下仍然可以得到光滑无振荡的解.而且,最小二乘法产生的求解系数矩阵是对称正定的,与GFEM中的系数矩阵相比,仅需要存储一半的非零系数,可以应用许多高效的迭代求解方法进行求解.为了检验模型,本文研究了一维吸收散射性介质内瞬态辐射传输问题,其结果与蒙特卡洛法(MCM)和积分模型法(IE)的结果进行了比较,结果证实:本文的方法可以精确、高效地模拟参与性介质内的瞬态辐射传输.  相似文献   

13.
We present a plane parallel radiative transfer model for polarized light, that provides the intensity vector as well as the derivatives of the four Stokes parameters with respect to atmospheric trace gas profiles. These derivatives are essential for retrieval of height resolved trace gas information from satellite measurements of backscattered sunlight. The model uses the Gauss-Seidel iteration technique for solving the radiative transfer equation. For the first time, the forward-adjoint radiative perturbation theory is applied for the linearization of a radiative transfer model including polarization. The accuracy of the model is better than 0.025% for all four Stokes parameters and better than 0.03% for the derivatives.  相似文献   

14.
In this paper and the sequel, we investigate the application of classic inverse methods based on iterative least-squares cost-function minimization to the simultaneous retrieval of aerosol and ocean properties from visible and near infrared spectral radiance measurements such as those from the SeaWiFS and MODIS instruments. Radiance measurements at the satellite are simulated directly using an accurate coupled atmosphere-ocean-discrete-ordinate radiative transfer (CAO-DISORT) code as the main component of the forward model. For this kind of cost-function inverse problem, we require the forward model to generate weighting functions (radiance partial derivatives) with respect to the aerosol and marine properties to be retrieved, and to other model parameters which are sources of error in the retrievals.In this paper, we report on the linearization of the CAO-DISORT model. This linearization provides a complete analytic differentiation of the coupled-media radiative transfer theory, and it allows the model to generate analytic weighting functions for any atmospheric or marine parameter. For high solar zenith angles, we give an implementation of the pseudo-spherical (P-S) approach to solar beam attenuation in the atmosphere in the linearized model. We summarize a number of performance enhancements such as the use of an exact single-scattering calculation to improve accuracy. We derive inherent optical property inputs for the linearized CAO-DISORT code for a simple 2-parameter bio-optical model for the marine environment coupled to a 2-parameter bimodal atmospheric aerosol medium.  相似文献   

15.
The main goal of this paper is to give a rigorous derivation of the generalized form of the direct (also referenced as forward) and adjoint radiative transfer equations. The obtained expressions coincide with expressions derived by Ustinov [Adjoint sensitivity analysis of radiative transfer equation: temperature and gas mixing ratio weighting functions for remote sensing of scattering atmospheres in thermal IR. JQSRT 2001;68:195-211]. However, in contrast to [Ustinov EA. Adjoint sensitivity analysis of radiative transfer equation: temperature and gas mixing ratio weighting functions for remote sensing of scattering atmospheres in thermal IR. JQSRT 2001;68:195-211] we formulate the generalized form of the direct radiative transfer operator fully independent from its adjoint. To illustrate the application of the derived adjoint radiative transfer operator we consider the angular interpolation problem in the framework of the discrete ordinate method widely used to solve the radiative transfer equation. It is shown that under certain conditions the usage of the solution of the adjoint radiative transfer equation for the angular interpolation of the intensity can be computationally more efficient than the commonly used source function integration technique.  相似文献   

16.
A meshless local Petrov-Galerkin (MLPG) approach is employed for solving the coupled radiative and conductive heat transfer in a one-dimensional slab with graded index media. The angular distribution term in discrete ordinate equation of radiative transfer within a one-dimensional graded index slab is discretized by a step scheme, and the meshless approach for radiative transfer is based on the discrete ordinate equation. A moving least-squares approximation is used to construct the shape function. Two particular test cases for coupled radiative and conductive heat transfer within a one-dimensional graded index slab are examined to verify this new approximate method. The temperatures and the radiative heat fluxes are obtained. The results are compared with the other benchmark approximate solutions. By comparison, the results show that the MLPG approach has a good accuracy in solving the coupled radiative and conductive heat transfer in one-dimensional graded index media.  相似文献   

17.
This paper presents a new numerical scheme of the discrete ordinates method for the solution of axisymmetric radiative transfer problems in irregular domains filled by media with opaque and transparent diffuse and specular (Fresnel) boundaries and interfaces. New test problems of radiative transfer, which describe radiative transfer in domains with Fresnel interfaces, are proposed in this paper. These problems admit analytic solutions and can be used as benchmark ones. The proposed scheme is applied to the solution of the problems. Numerical results show that the presence of Fresnel interfaces leads to an appreciably larger error in numerical solution. This is connected with the “discontinuity” of the Fresnel reflectivity, which, through numerical diffusion, leads to the distortion of numerical solution. Modification of the scheme allows to reduce the numerical error.  相似文献   

18.
Because the optical plane defined by the incidence and reflection direction at a cylindrical surface has a complicated relation with the local azimuthal angle and zenith angle in the traditional cylindrical coordinate system, it is difficult to deal with the specular reflective boundary condition in the solution of the traditional radiative transfer equation for cylindrical system. In this paper, a new radiative transfer equation for graded index medium in cylindrical system (RTEGCN) is derived based on a newly defined cylindrical coordinate system. In this new cylindrical coordinate system, the optical plane defined by the incidence and reflection direction is just the isometric plane of the local azimuthal angle, which facilitates the RTEGCN in dealing with cylindrical specular reflective boundaries. A least squares finite element method (LSFEM) is developed for solving radiative transfer in single and multi-layer cylindrical medium based on the discrete ordinates form of the RTEGCN. For multi-layer cylindrical medium, a radial basis function interpolation method is proposed to couple the radiative intensity at the interface between two adjacent layers. Various radiative transfer problems in both single and multi-layer cylindrical medium are tested. The results show that the present finite element approach has good accuracy to predict the radiative heat transfer in multi-layer cylindrical medium with Fresnel surfaces.  相似文献   

19.
In graded index medium, ray goes along a curved path determined by Fermat principle, and curved ray-tracing is very difficult and complex. To avoid the complicated and time-consuming computation of curved ray trajectories, a finite element method based on discrete ordinate equation is developed to solve the radiative transfer problem in a multi-dimensional semitransparent graded index medium. Two particular test problems of radiative transfer are taken as examples to verify this finite element method. The predicted dimensionless net radiative heat fluxes are determined by the proposed method and compared with the results obtained by finite volume method. The results show that the finite element method presented in this paper has a good accuracy in solving the multi-dimensional radiative transfer problem in semitransparent graded index medium.  相似文献   

20.
We derive nonstandard layer-edge conditions for efficient solution of multislab atmospheric radiative transfer problems. We begin by defining a local radiative transfer problem on the lowermost layer of a multislab model atmosphere and we consider a standard discrete ordinates version of this local problem. We then make use of a recently developed computational method in order to derive layer-edge conditions involving incident, reflected and transmitted radiation. These layer-edge conditions for the lowermost layer are given in terms of inherent optical properties of the layer, the solar zenith angle and the quadrature set used in the discrete ordinates approach. They can be used to increase the efficiency of our computational method in solving practical problems in atmospheric radiative transfer. Moreover, they are amenable to incorporation into other discrete ordinates methods. To illustrate, we report numerical results for two atmospheric model problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号