首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
High resolution HF product time-of-flight spectra measured for the reactive scattering of F atoms from n-H2(p-H2) molecules at collision energies between 69 and 81 meV are compared with exact coupled-channel quantum mechanical calculations based on the Stark-Werner ab initio ground state potential energy surface. Excellent agreement between the experimental and computed rotational distributions is found for the HF product vibrational states v'=1 and v'=2. For the v'=3 vibrational state the agreement, however, is less satisfactory, especially for the reaction with p-H2. The results for v'=1 and v'=2 confirm that the reaction dynamics for these product states is accurately described by the ground electronic state 1 (2)A' potential energy surface. The deviations for HF(v'=3, j' > or =2) are attributed to an enhancement of the reaction resulting from the 25% fraction of excited ((2)P(12)) fluorine atoms in the reactant beam.  相似文献   

2.
Infrared chemiluminescence under conditions of arrested relaxation has been applied to the study of the hydrogen and deuterium abstraction reactions of HCOOH, DCOOH and H2CO with F atoms. Two distinctly different modes of product excitation are observed, depending upon whether the reaction proceeds via the formyl or carboxyl hydrogen. Reaction at the formyl hydrogen (or deuterium) causes substantial inversion in the diatomic product internal energy distributions. The F + H2CO and F + DCOOH reactions respectively channel 56% and 54% of the available energy into vibration in the product diatomic when they occur at the formyl site. In both cases the product energy distributions are qualitatively similar to those observed in direct reactions of triatomic systems on repulsive energy surfaces. In contrast to these, reaction at the carboxyl hydrogen of DCOOH gives an HF2 product vibrational distribution having a Boltzmann equilibrium shape at a temperature of 4300 K. The ratio of HF to DF product from the F + DCOOH study shows that reaction occurs at the carboxyl hydrogen approximately twice as often as at the formyl site. Comparison with triatomic reactions involving the same mass-combinations implies that abstraction of the formyl hydrogen occurs via single-collision, direct encounters, whereas reaction at the carboxyl site involves a long-lived complex in which extensive randomisation of the reaction exoergicity among all the product vibrational modes can occur.  相似文献   

3.
The effects of the reactant bending excitations in the F+CHD(3) reaction are investigated by crossed molecular beam experiments and quasiclassical trajectory (QCT) calculations using a high-quality ab initio potential energy surface. The collision energy (E(c)) dependence of the cross sections of the F+CHD(3)(v(b)=0,1) reactions for the correlated product pairs HF(v('))+CD(3)(v(2)=0,1) and DF(v('))+CHD(2)(v(4)=0,1) is obtained. Both experiment and theory show that the bending excitation activates the reaction at low E(c) and begins to inactivate at higher E(c). The experimental F+CHD(3)(v(b)=1) excitation functions display surprising peak features, especially for the HF(v(')=3)+CD(3)(v(2)=0,1) channels, indicating reactive resonances (quantum effects), which cannot be captured by quasiclassical calculations. The reactant state-specific QCT calculations predict that the v(5)(e) bending mode excitation is the most efficient to drive the reaction and the v(6)(e) and v(5)(e) modes enhance the DF and HF channels, respectively.  相似文献   

4.
We describe fully quantum, time-independent scattering calculations of the F+H2-->HF+H reaction, concentrating on the HF product rotational distributions in v'=3. The calculations involved two new sets of ab initio potential energy surfaces, based on large basis set, multireference configuration-interaction calculations, which are further scaled to reproduce the experimental exoergicity of the reaction. In addition, the spin-orbit, Coriolis, and electrostatic couplings between the three quasidiabatic F+H2 electronic states are included. The calculated integral cross sections are compared with the results of molecular beam experiments. At low collision energies, a significant fraction of the reaction is due to Born-Oppenheimer forbidden, but energetically allowed reaction of F in its excited (2P 1/2) spin-orbit state. As the collision energy increases, the Born-Oppenheimer allowed reaction of F in its ground (2P 3/2) spin-orbit state rapidly dominates. Overall, the calculations agree reasonably well with the experiment, although there remains some disagreement with respect to the degree of rotational excitation of the HF(v'=3) products as well as with the energy dependence of the reactive cross sections at the lowest collision energies.  相似文献   

5.
High-resolution infrared laser spectroscopy is used to study the CH3...HF and CD3...HF radical complexes, corresponding to the exit-channel complex in the F + CH4 --> HF + CH3 reaction. The complexes are formed in helium nanodroplets by sequential pickup of a methyl radical and a HF molecule. The rotationally resolved spectra presented here correspond to the fundamental v = 1 <-- 0 H-F vibrational band, the analysis of which reveals a complex with C(3v) symmetry. The vibrational band origin for the CH3...HF complex (3797.00 cm(-1)) is significantly redshifted from that of the HF monomer (3959.19 cm(-1)), consistent with the hydrogen-bonded structure predicted by theory [E. Ya. Misochko et al., J. Am. Chem. Soc. 117, 11997 (1995)] and suggested by previous matrix isolation experiments [M. E. Jacox, Chem. Phys. 42, 133 (1979)]. The permanent electric dipole moment of this complex is experimentally determined by Stark spectroscopy to be 2.4+/-0.3 D. The wide amplitude zero-point bending motion of this complex is revealed by the vibrational dependence of the A rotational constant. A sixfold reduction in the line broadening associated with the H-F vibrational mode is observed in going from CH3...HF to CD3...HF. The results suggest that fast relaxation in the former case results from near-resonant intermolecular vibration-vibration (V-V) energy transfer. Ab initio calculations are also reported (at the MP2 level) for the various stationary points on the F + CH4 surface, including geometry optimizations and vibrational frequency calculations for CH3...HF.  相似文献   

6.
A detailed state-to-state dynamics study was performed to analyze the effects of vibrational excitation and translational energy on the dynamics of the Cl((2)P) + NH(3)(v) gas-phase reaction, effects which are connected to such issues as mode selectivity and Polanyi's rules. This reaction evolves along two deep wells in the entry and exit channels. At low and high collision energies quasi-classical trajectory calculations were performed on an analytical potential energy surface previously developed by our group, together with a simplified model surface in which the reactant well is removed to analyze the influence of this well. While at high energy the independent vibrational excitation of all NH(3)(v) modes increases the reactivity by a factor ≈1.1-2.9 with respect to the vibrational ground-state, at low energy the opposite behaviour is found (factor ≈ 0.4-0.9). However, when the simplified model surface is used at low energy the independent vibrational excitation of all NH(3)(v) modes increases the reactivity, showing that the behaviour at low energies is a direct consequence of the existence of the reactant well. Moreover, we find that this reaction exhibits negligible mode selectivity, first because the independent excitation of the N-H symmetric and asymmetric stretch modes, which lie within 200 cm(-1) of each other, leads to reactions with similar reaction probabilities, and second because the vibrational excitation of the reactive N-H stretch mode is only partially retained in the products. For this "late transition-state" reaction, we also find that vibrational energy is more effective in driving the reaction than an equivalent amount of energy in translation, consistent with an extension of Polanyi's rules. Finally, we find that the non-reactive events, Cl((2)P)+NH(3)(v) → Cl((2)P) + NH(3)(v'), lead to a great number of populated vibrational states in the NH(3)(v') product, even starting from the NH(3)(v = 0) vibrational ground state at low energies, which is unphysical in a quantum world. This result is interpreted on the basis of non-conservation of the ZPE per mode.  相似文献   

7.
We report quantum dynamics calculations of F((2)P)+HCl(v,j)-->HF(v('),j('))+Cl((2)P) and F+DCl(v,j)-->DF(v('),j('))+Cl reactions at cold and ultracold temperatures. The effect of rotational and vibrational excitations of the HCl molecule on the reactivity is investigated. It is found that, in the ultracold regime, vibrational excitation of the HCl molecule from v=0 to v=2 enhances the reactivity by four orders of magnitude. The rotational excitation from j=0 to j=1 decreases the reactivity while the rotational excitation from j=0 to j=2 increases the reactivity. The overall effect of rotational excitation was found to be much smaller than vibrational excitation. The reactivity of the F+DCl system is significantly lower than that of the F+HCl case indicating the importance of quantum tunneling at low energies. For both reactions, Feshbach resonances corresponding to Fcdots, three dots, centered HCl or Fcdots, three dots, centeredDCl triatomic states occur at low energies. We also explored the validity of the coupled-states approximation for cold collisions taking the F+HCl(v=0,j=0) reaction as an illustrative example. It is found that the coupled-states approximation is generally valid for the background scattering even at low energies but it is inadequate to accurately describe the rich resonances in the energy dependence of the cross section resulting from the decay of van der Waals complexes. It is further shown that the coupled-states approximation cannot be used for scattering in the Wigner threshold regime when the molecule is initially in a rotationally excited level.  相似文献   

8.
We present an electronic structure and dynamics study of the F+CH4-->HF+CH3 reaction. CCSD(T)/aug-cc-pVDZ geometry optimizations, harmonic-frequency, and energy calculations indicate that the potential-energy surface is remarkably isotropic near the transition state. In addition, while the saddle-point F-H-C angle is 180 degrees using MP2 methods, CCSD(T) geometry optimizations predict a bent transition state, with a 153 degrees F-H-C angle. We use these high-quality ab initio data to reparametrize the parameter-model 3 (PM3) semiempirical Hamiltonian so that calculations with the improved Hamiltonian and employing restricted open-shell wave functions agree with the higher accuracy data. Using this specific-reaction-parameter PM3 semiempirical Hamiltonian (SRP-PM3), we investigate the reaction dynamics by propagating quasiclassical trajectories. The results of our calculations using the SRP-PM3 Hamiltonian are compared with experiments and with the estimates of two recently reported potential-energy surfaces. The trajectory calculations using the SRP-PM3 Hamiltonian reproduce quantitatively the measured HF vibrational distributions. The calculations also agree with the experimental HF rotational distributions and capture the essential features of the excitation function. The results of the SRP semiempirical Hamiltonian developed here clearly improve over those using the two prior potential-energy surfaces and suggest that reparametrization of semiempirical Hamiltonians is a promising strategy to develop accurate potential-energy surfaces for reaction dynamics studies of polyatomic systems.  相似文献   

9.
By using molecular beam apparatus the visible (450–900 nm) chemiluminescence of the reaction F + CH3F was investigated. Seven vibronic bands of HCF (Ã1A-XA') and four vibrational bands of HF ground state overtone transitions were obtained. The relative vibrational state distributions of HF (V'=4,5,6) states and the rotational temperature of HF (V'=3) state were obtained. The analyses show that the two kinds of spectra were caused by the secondary reaction F+CH3F. The results may be helpful to explain the contradictory results of the experiments in F+CH3F system.  相似文献   

10.
The HF and DF vibrational distributions for the hydrogen abstraction reactions between F atoms and CH3COOD, CD3COOH, CF3COOD and CF3COO have been measured by arrested relaxation infrared chemiluminescence. Phase space calculations have been carried out which accurately reproduce the dis observed for the reactions at the carboxyl site in each case. The calculations suggest that the energy is not completely randomised during the acetic a whereas the trifluoroacetic acid reactions show ergodic behaviour.  相似文献   

11.
We study scattering resonances in the F+HD-->HF+D reaction using a new method for direct evaluation of the lifetime Q-matrix [Aquilanti et al., J. Chem. Phys. 2005, 123, 054314]. We show that most of the resonances are due to van der Waals states in the entrance and exit reaction channels. The metastable states observed in the product reaction channel are assigned by calculating the energy levels and wave functions of the HF...D van der Waals complex. The behavior of resonance energies, widths, and decay branching ratios as functions of total angular momentum is analyzed. The effect of isotopic substitution on resonance energies and lifetimes is elucidated by comparison with previous results for the F+H2 reaction. It is demonstrated that HF(v'=3) products near threshold are formed by decay of the narrow resonances supported by van der Waals wells in the exit channel. State-to-state differential cross sections in the HF(v'=3) channel exhibit characteristic forward-backward peaks due to the formation of a long-lived metastable complex. The role of the exit-channel resonances in the interpretation of molecular beam experiments is discussed.  相似文献   

12.
Quasi-classical trajectory calculations for the Si(3P)+O2(X 3Sigmag-)-->SiO(X 1Sigma+)+O(1D) reaction have been carried out using the analytical ground 1A' potential energy surface (PES) recently reported by Dayou and Spielfiedel [J. Chem. Phys. 119, 4237 (2003)]. The reaction has been studied for a wide range of collision energies (0.005-0.6 eV) with O2 in its ground rovibrational state. The barrierless PES leads to a decrease of the total reaction cross section with increasing collision energy. It has been brought to evidence that the reaction proceeds through different reaction mechanisms whose contributions to reactivity are highly dependent on the collision energy range. At low collision energy an abstraction mechanism occurs involving the collinear SiOO potential well. The associated short-lived intermediate complex leads to an inverted vibrational distribution peaked at v'=3 and low rotational excitation of SiO(v',j') with a preferentially backward scattering. At higher energies the reaction proceeds mainly through an insertion mechanism involving the bent and linear OSiO deep potential wells and associated long-lived intermediate complexes, giving rise to nearly statistical energy disposals into the product modes and a forward-backward symmetry of the differential cross section.  相似文献   

13.
In this paper we present integral cross sections (in the 5-220 meV collision energy range) and rate constants (in the 100-300 K range of temperature) for the F+HD reaction leading to HF+D and DF+H. The exact quantum reactive scattering calculations were carried out using the hyperquantization algorithm on an improved potential energy surface which incorporates the effects of open shell and fine structure of the fluorine atom in the entrance channel. The results reproduce satisfactorily molecular beam scattering experiments as well as chemical kinetics data for both the HF and DF channels. In particular, the agreement of the rate coefficients and the vibrational branching ratios with experimental measurements is improved with respect to previous studies. At thermal and subthermal energies, the rates are greatly influenced by tunneling through the reaction barrier. Therefore exchange of deuterium is shown to be penalized with respect to exchange of hydrogen, and the isotopic branching exhibits a strong dependence on translational energy. Also, it is found that rotational excitation of the reactant HD molecule enhances the production of HF and decreases the reactivity at the D end, obtaining insight on the reaction stereodynamics.  相似文献   

14.
The F + CH(3)NHNH(2) reaction mechanism is studied based on ab initio quantum chemistry methods as follows: the minimum energy paths (MEPs) are computed at the UMP2/6-311++G(d,p) level; the geometries, harmonic vibrational frequencies, and energies of all stationary points are predicted at the same level of theory; further, the energies of stationary points and the points along the MEPs are refined by UCCSD(T)/6-311++g(3df,2p). The ab initio study shows that, when the F atom approaches CH(3)NHNH(2), the heavy atoms, namely N and C atoms, are the favorable combining points. For the two N atoms, two prereaction complexes with C(s) symmetry are generated and there exists seven possible subsequent reaction routes, of which routes 1, 2, 5, and 7 are the main channels. Routes 1, 2, and 5 are associated with HF elimination, with H from the amino group or imido group, and route 7 involves the N-N bond break. Routes 3 and 6 with relation to HF elimination with H from methyl, and route 4 involved the C-N bond break, are all energetically disfavored. For the C atom, the attack of F results in the break of the C-N bond and the products are CH(3)F + NHNH(2). This route is very competitive.  相似文献   

15.
An exhaustive state-to-state dynamics study was performed to analyze the F + CHD3 --> FD(nu', j') + CHD2(nu) gas-phase abstraction reaction. Quasiclassical trajectory (QCT) calculations, including corrections to avoid zero-point energy leakage along the trajectories, were performed at different collision energies on an analytical potential energy surface (PES-2006) recently developed by our group. Whereas the CHD2 coproduct appears vibrationally and rotationally cold, most of the available energy appears as FD(nu') product vibrational energy, peaking at nu' = 2 and nu' = 3, with the population in the latter level growing as the energy increases. The excitation function rises from the threshold of the reaction and then levels off at higher energies, with the maximum contribution from the FD(nu' = 3) level. The state-specific FD(nu') scattering distributions correlated with the coproduct CHD2 in the nu4 = 2 and nu3 = 1 states, at different collision energies, show a steady change from backward to forward scattering as the energy increases. This similar behavior for the two coproduct vibrational states, nu4 = 2 and nu3 = 1, agrees qualitatively with the experimental measurements. Comparison with theoretical and experimental results for the isotopic analogues, F + CH4 and F + CD4, shows that the title reaction presents a direct mechanism, similar to the perdeuterated reaction, but contrasts with that of the F + CH4 reaction. These results for the dynamics of different isotopic variants, always in qualitative and sometimes in quantitative agreement with experiment, show the capacity of the PES-2006 surface to correctly describe the title reaction, even though there are differences that could be due to deficiencies of the PES but also to the known limitations of the classical treatment in the QCT method.  相似文献   

16.
A rigorous full dimensional time-dependent wave packet method has been developed for the reactive scattering between an atom and a tetra-atomic molecule. The method has been applied to the hydrogen abstraction reaction H+NH(3)-->H(2)+NH(2). Initial state-selected total reaction probabilities are investigated for the reactions from the ground vibrational state and from four excited vibrational states of ammonia. The total reaction probabilities from two lowest "tunneling doublets" due to the inversion barrier for the umbrella bending motion of NH(3) and from two pairs of doubly degenerate vibrational states of NH(3) are also inspected. Integral cross sections and rate constants are calculated for the reaction from the ground state with the centrifugal-sudden approximation. The calculated results are compared with those from the previous seven dimensional calculations [M. Yang and J. C. Corchado, J. Chem. Phys. 126, 214312 (2007)]. This work shows that the full dimensional rate constants are a factor of 3 larger than the corresponding seven dimensional calculated values at T=200 K and are overall smaller than those obtained from the variational transition state theory in the whole temperature region. The work also reveals that nonreactive NH bonds of NH(3) cannot be treated as spectators due to the fact that three NH bonds are coupled with each other during the reaction process.  相似文献   

17.
The radical-molecule reaction F+propene (CH2CHCH3) was studied in detail by using the Becke's three parameter Lee-Yang-Parr-B3LYP/6-311G(d,p) and coupled cluster with single, double, and triple excitationsCCSD(T)/6-311+G(2d,2p). It is shown that F+propene reaction mainly occurs through complex-formation mechanism: F attacks the double bond of propene leading to the formation of complex 1 and complex 2. As the two radical complexes are metastable, they can quickly dissociate to H+C3H5F, CH3+C2H3F and HF+C3H5. Based on the ab initio calculations, the CH3+C2H3F is the main channel, and the H elimination and HF forming channels also provide some contribution to products. The calculated values are in good agreement with the recently reported experimental results.  相似文献   

18.
Quantum-state-resolved reactive-scattering dynamics of F+D(2)O-->DF+OD have been studied at E(c.m.)=5(1) kcal/mol in low-density crossed supersonic jets, exploiting pulsed discharge sources of F atom and laser-induced fluorescence to detect the nascent OD product under single-collision conditions. The product OD is formed exclusively in the v(OD)=0 state with only modest rotational excitation ( =0.50(1) kcal/mol), consistent with the relatively weak coupling of the 18.1(1) kcal/mol reaction exothermicity into "spectator" bond degrees of freedom. The majority of OD products [68(1)%] are found in the ground ((2)Pi(32) (+/-)) spin-orbit state, which adiabatically correlates with reaction over the lowest and only energetically accessible barrier (DeltaE( not equal) approximately 4 kcal/mol). However, 32(1)% of molecules are produced in the excited spin-orbit state ((2)Pi(12) (+/-)), although from a purely adiabatic perspective, this requires passage over a DeltaE( not equal) approximately 25 kcal/mol barrier energetically inaccessible at these collision energies. This provides unambiguous evidence for nonadiabatic surface hopping in F+D(2)O atom abstraction reactions, indicating that reactive-scattering dynamics even in simple atom+polyatom systems is not always isolated on the ground electronic surface. Additionally, the nascent OD rotational states are well fitted by a two-temperature Boltzmann distribution, suggesting correlated branching of the reaction products into the DF(v=2,3) vibrational manifold.  相似文献   

19.
The title reaction was investigated under crossed-beam conditions at collisional energies ranging from about 0.4 to 7.5 kcal/mol. Product velocity distributions were measured by a time-sliced, velocity-map imaging technique to explicitly account for the density-to-flux transformation factors. Both the state-resolved, pair-correlated excitation functions and vibrational branching ratios are presented for the two isotopic product channels. An intriguing resonance tunneling mechanism occurring near the reaction threshold for the HF+CD3 product channel is surmized, which echoes the reactive resonances found previously for the F+HD-->HF+D reaction and more recently for the F+CH4 reaction.  相似文献   

20.
Quantum-mechanical calculations are reported for the Li+HF(v=0,1,j=0)-->H+LiF(v',j') bimolecular scattering process at low and ultralow temperatures. Calculations have been performed for zero total angular momentum using a recent high-accuracy potential-energy surface for the X2A' electronic ground state. For Li+HF(v=0,j=0), the reaction is dominated by resonances due to the decay of metastable states of the Li cdots,...F-H van der Waals complex. Assignment of these resonances has been carried out by calculating the eigenenergies of the quasibound states. We also find that while chemical reactivity is greatly enhanced by vibrational excitation, the resonances get mostly washed out in the reaction of vibrationally excited HF with Li atoms. In addition, we find that at low energies, the reaction is significantly suppressed due to the less-efficient tunneling of the relatively heavy fluorine atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号