共查询到18条相似文献,搜索用时 46 毫秒
1.
2.
本论文对高温超导磁体在传输直流电流时产生的损耗进行了理论分析和实验验证.本文考虑了高温超导带材非线性模型磁场方向对带材临界电流和n值的影响,用Bi2223超导带材绕制了(一个由20个双饼组成的高温超导磁体,用数值仿真和实验方法研究了此磁体传输直流电流时的指数损耗.并对每个双饼以及每匝线圈的损耗进行了分析.在液氮温度下对一个双饼线圈进行了指数损耗的测量,测量结果与数值仿真结果相当吻合.利用高温超导体临界电流此非线性模型,本文对此磁体快速励磁情况下的交流损耗的特点进行了数值模拟. 相似文献
3.
本论文对高温超导磁体在传输直流电流时产生的损耗进行了理论分析和实验验证.本文考虑了高温超导带材非线性模型磁场方向对带材临界电流和n值的影响,用Bi2223超导带材绕制了(一个由20个双饼组成的高温超导磁体,用数值仿真和实验方法研究了此磁体传输直流电流时的指数损耗.并对每个双饼以及每匝线圈的损耗进行了分析.在液氮温度下对一个双饼线圈进行了指数损耗的测量,测量结果与数值仿真结果相当吻合.利用高温超导体临界电流此非线性模型,本文对此磁体快速励磁情况下的交流损耗的特点进行了数值模拟. 相似文献
4.
随着第二代高温超导(2G-HTS)带材技术的进步和性价比的提高,世界各地的科研机构纷纷展开了基于REBa2Cu3O7−δ(RE123)带材的磁体研制。RE123带材具有极高的载流能力和在场性能,能产生低温超导(LTS)磁体不能达到的强磁场(>24 T)。然而,RE123磁体依然面临着诸多挑战,如磁体的工艺技术、带材的机械性能及性价比等都还需要进一步的提升与优化。文章首先介绍了用于磁体绕制2G-HTS带材,包括其成材工艺、在场性能及应力应变影响等;其次讨论了超导磁体研制的重要技术问题,包括RE123线圈技术、磁体失超保护、屏蔽电流效应及交流损耗等;最后对国内外2G-HTS磁体的研究进展进行了总结,包括磁体的设计方案、技术特点和运行情况等。 相似文献
5.
大型高温超导磁体稳定措施的研究 总被引:1,自引:0,他引:1
本通过估算高温超导磁体的抗干扰稳定能力及磁体中可能出现的干扰的大小,讨论了对于大型高温超导磁体采用动态稳定判据的可靠行性,从而提出了动态稳定化大型高温超导磁体的概念,结果表明,动态稳定化高温超导磁体的抗干扰稳定能力大于磁体可能出现的干扰的大小,且同全稳定的大型低温超导磁体的抗干扰的能力水平相当,在银超比较小的情况下就能使设计的允许最大临界电流密度大于超导体实际的临界电流密度,因此采用动态稳定阉据 相似文献
6.
7.
8.
9.
10.
11.
临界电流值是描述Bi2223高温超导带材性能的一个基本参数,在一定的温度条件下,Bi2223高温超导带材的临界电流是带材所在位置磁场大小和磁场方向的函数,其短样的临界电流值可以通过四引线法测量,单根超导带材的自场很小,磁场对临界电流的影响可以忽略.高温超导磁体的临界电流被定义成引发该磁体失超的最小电流,高温超导磁体的自场比单根超导带材的自场要大得多,磁体各个位置的磁场大小和方向各不相同,很难用理论的方法准确计算磁体的临界电流.对于高温超导磁体而言,除了磁场的影响因素以外,绕制磁体所用的超导带材自身的均匀性也是影响其临界电流的一个重要因素.本文对这两个因素进行探讨,并着重讨论高温超导带材自身的均匀性对临界电流大小的影响,本文的结论可以为高温超导磁体的设计、磁体绕制时带材的选择、磁体运行时安全工作电流的确定提供帮助. 相似文献
12.
13.
本文对高温超导双饼线圈的绕制、测试和结果进行了讨论和分析,在此基础之上对传导冷却高温超导磁体进行了电磁分析,通过对6到21个双饼线圈组成的磁体的各种参数进行计算,得到了一系列变化曲线,从中可以看到各个参数的变化趋势,以便有效设计高温超导磁体。 相似文献
14.
15.
遗传算法具有很强的自适应性、鲁棒性和全局搜索能力,但其局部搜索能力相对较弱,计算后期易出现进化缓慢、过早收敛等问题,蚁群算法是近几年迅速发展起来的一种新的全局优化算法,具有正反馈机制,但是计算初期由于信息素差别小,初始收敛速度较慢.本文将这两种优化方法结合起来,充分发挥各自的优势,形成了遗传-蚁群混合算法,并选用测试函数对算法的优化性能作了对比计算,最后以高温超导匀场磁体为实际应用目标,以绕制磁体所用超导带长度为目标函数对磁体结构进行优化设计,优化方案比原始方案节省7.32%的超导带材用量. 相似文献
16.
对磁体致冷是维持超导态必不可少的条件,由于深低温技术的复杂性和昂贵的造价曾制约了超导磁体应用的推广,其中电流引线是磁体系统最主要热负荷。经历高温超导(HTS)材料20多年的研发,人们认识到产生强磁场的超导磁体仍需运行在30K以下。热导率与不锈钢可比的HTS材料在80K以下可承载电流而无焦耳热,采用HTS电流引线可使超导磁体的致冷运行费和设备投资大幅度降低,操作简便。因此,它是超导磁体扩大应用的助推器。介绍其使用特点和应用举例。 相似文献
17.