首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of 3-bromo-4,5-dihydro-5-hydroperoxy-4,4-dimethyl-3,5-diphenyl-3H-pyrazole with tertiary amines and sulfides produced amine oxides and sulfoxides in high yield with k2's for amines similar to those reported for reaction of amines with a 4a-hydroperoxyflavin.  相似文献   

2.
The conjugated 3,3′,5,5′-tetra(p-X-phenylethynyl)biphenyl derivatives were efficiently obtained by homocoupling of 1-bromo-3,5-di(p-X-phenylethynyl)benzene mediated by zero-valent nickel complexes.The 1-bromo-3,5-di(p-X-phenylethynyl)benzene was previously prepared by heterocoupling between 1-bromo-3,5-di(ethynyl)benzene and p-X-iodobenzene (X: NMe2; OMe) catalysed by the palladium/copper system in good yield. The necessary 1-bromo-3,5-di(ethynyl)benzene was obtained by heterocoupling between 1,3,5-tribromobenzene and 2-methyl-3-butyn-2-ol catalysed by palladium and successive treatment with sodium hydroxide in dry toluene, in good yield.The same 3,3′,5,5′-tetra(p-X-phenylethynyl)biphenyl (X: NMe2; OMe) derivatives were alternatively synthesised in highest yield by heterocoupling between 3,3′,5,5′-tetra(ethynyl)biphenyl and p-X-bromobenzene (X: NMe2; OMe) catalysed by palladium in excellent yields. Previously, 3,3′,5,5′-tetra(ethynyl)biphenyl was obtained in practically quantitative yield by homocoupling of 1-bromo-3,5-di[4-(2-methyl-3-butyn-2-ol)] benzene mediated by the zero-valent nickel complex to the 3,3′,5,5′-tetra{di[4-(2-methyl-3-butyn-2-ol)]}biphenyl followed the treatment with sodium hydroxide.  相似文献   

3.
Electrophilic trisubstituted ethylenes, ring-trisubstituted methyl 2-cyano-3-phenyl-2-propenoates, RPhCH = C(CN)CO2CH3 (where R is 2,4,6-trimethyl, 3,5-dimethoxy-4-hydroxy, 3,5-dimethyl-4-hydoxy, 3,4,5-trimethoxy, 2-bromo-3-hydroxy-4-methoxy, 5-bromo-2,3-dimethoxy, 5-bromo-2,4-dimethoxy, 6-bromo-3,4-dimethoxy were prepared and copolymerized with styrene. The monomers were synthesized by the piperidine catalyzed Knoevenagel condensation of ring-trisubstituted benzaldehydes and methyl cyanoacetate, and characterized by CHN analysis, IR, 1H and 13C-NMR. All the ethylenes were copolymerized with styrene (M1) in solution with radical initiation (ABCN) at 70°C. The compositions of the copolymers were calculated from nitrogen analysis and the structures were analyzed by IR, 1H and 13C-NMR. The order of relative reactivity (1/r1) for the monomers is 5-bromo-2,3-dimethoxy (2.69) > 3,4,5-trimethoxy (1.86) > 6-bromo-3,4-dimethoxy (0.84) > 5-bromo-2,4-dimethoxy (0.39) > 4-hydoxy-3,5-dimethyl (0.31) = 2-bromo-3-hydroxy-4-methoxy (0.31) > 3,5-dimethoxy-4-hydroxy (0.24) > 2,4,6-trimethyl (0.22). Relatively high Tg of the copolymers in comparison with that of polystyrene indicates a decrease in chain mobility of the copolymer due to the high dipolar character of the trisubstituted ethylene monomer unit. Decomposition of the copolymers in nitrogen occurred in two steps, first in the 200–500ºC range with residue (1–6% wt), which then decomposed in the 500–800ºC range.  相似文献   

4.
Lee JH  Park JS  Cho CG 《Organic letters》2002,4(7):1171-1173
[reaction: see text] 3,5-Dibromo-2-pyrone underwent facile Pd(0)-catalyzed coupling reactions with various alkynes to give rise to the corresponding 3-alkynyl-5-bromo-2-pyrones with good to excellent chemical yields and regioselectivity.  相似文献   

5.
Conclusions The bromine atom is replaced by a nucleophile in the reaction of-bromo-4-hydroxy-3,5-di-tert-butyl-acetophenone with alkaline agents, and the corresponding 4-hydroxy-3,5-di-tert-butylacetophenone derivatives are formed.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 3, pp. 649–651, March, 1972.  相似文献   

6.
Conclusions When 2-bromo-4-acetyl-2,6-di-tert-butylcyclohexadiene-3,5-one is reacted with amines, potassium methylate, and methylmagnesium bromide, the reaction proceeds through a step in which 4-acetyl-2,6-di-tert-butylphenoxyl is formed.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 10, pp. 2311–2313, October, 1969.The authors express their appreciation to N. M. Émanuel for his interest in this work as it was being carried out.  相似文献   

7.
The reaction rates of 2-chloro-3,5-dinitropyridine 1 with a series of arylthiolates 2a-h in methanol have been measured at 25°C. The products are the corresponding 2-thioaryl-3,5-dinitropyridine 3a-h. Good Hammett correlation with ρ value −1.19 was obtained suggesting an elimination-addition mechanism SNAr and the formation of Meisenheimer-like intermediates. Plot of log k2 vs. pKa values of arylthiols gave straight line with β=0.38 indicating that the π-bond breaking in the pyridine ring is so much advanced over bond making between the nucleophile and the carbon that bears the chlorine atom. Excellent correlation between log k2 and log K (carbon basicity of arylthiolates) was obtained. © 1997 John Wiley & Sons. Inc. Int J Chem Kinet 29: 515–521, 1997.  相似文献   

8.
Reactions of 3,5-dibromo-1-(thiiran-2-ylmethyl)-1,2,4-triazole with 3,5-dimethylpyrazole, 1,3-dimethyl-3,7-dihydropurine-2,6-dione, 3,5-dibromo-1,2,4-triazole, 2,4,5-tribromoimidazole, and 2-chlorobenzimidazole lead to the formation of 5-azolylmethyl-2-bromo-5,6-dihydrothiazolo[3,2-b]-1,2,4-triazoles. In the case of 8-bromo-1,3-dimethyl-3,7-dihydropurine-2,6-dione the intermediate thiolate anion undergoes cyclization into 7-[(3,5-dibromo-1,2,4-triazol-1-yl)methyl]-1,3-dimethyl-6,7-dihydrothiazolo[2,3-f]purine-2,4(1H,3H)-dione. The structure of reaction products depends on the relative rate of substitution of leaving groups in the reagents.  相似文献   

9.
The crystal structures of nitrato-{4-bromo-2-[2-hydroxyethylimino)methyl]phenolo}-(3,5-dibromopyridine)copper (I) and nitrato-{2,4-dibromo-6-[(2-hydroxyethylimino)methyl]phenolo}-(3,5-dibromopyridine)copper (II) are determined. The crystals of compound I are orthorhombic: a = 14.157(3) Å, b = 15.420(3) Å, c = 17.494(4) Å, space group Pbca, Z = 8, R = 0.067. The crystals of compound II are monoclinic: a = 10.675 Å, b = 13.973 Å, c = 14.007 Å, β = 111.92°, space group P21/n, Z = 4, R = 0.0464. In the structures of compounds I and II, the copper atom coordinates, correspondingly, singly deprotonated 4-bromo-2-[(2-hydroxyethylimino)methyl]phenol and 2,4-dibromo-6-[(2-hydroxyethylimino)methyl]phenol molecules, and 3,5-dibromopyridine, and the nitrate ion. The coordination polyhedron of the copper ion in complexes I and II is a slightly distorted tetragonal pyramid. The bases of the pyramids are formed by the imine and pyridine nitrogen atoms and the phenolic and alcoholic oxygen atoms, and the axial vertices are occupied by the oxygen atoms of the monodentate nitrato groups. In the complexes under study, the six-membered metallocycles have asymmetric gauche conformation. In crystal, complexes I are united, due to the slip plane a, through bifurcate hydrogen bonds into infinite chains along the direction [100]. Complexes II in crystal form two-dimensional networks by means of hydrogen bonds.  相似文献   

10.
Three dimeric copper(II) complexes have been prepared with the general formula bis(2-amino-3,5-dihalopyridinium)hexahalodicuprate cuprate(II): (3,5-diCAPH)2Cu2Br6 (1), (3,5-diBAPH)2Cu2Cl6 (2) and (3,5-diBAPH)2Cu2Br6 (3) [3,5-diCAPH = 2-amino-3,5-dichloropyridinium; 3,5-diBAPH = 2-amino-3,5-dibromopyridinium]. The compounds have been characterized via single crystal X-ray diffraction and temperature dependent magnetic susceptibility measurements. All three compounds crystallize in monoclinic space groups (1, C2/c; 2 and 3, P21/c) and exhibit alternating layers of hexahalodicuprate ions and organic cations. The hexahalodicuprate ions exhibit short X?Cu and X?X contacts which link the dimers into a square array. Variable temperature magnetic susceptibility data reveal strong intradimer antiferromagnetic exchange (J = ?153, ?65, ?122 K for 13, respectively), but negligible inter-dimer magnetic exchange.  相似文献   

11.
Bromination of 3,5-dimethylpyrazole nucleosides with N-bromosuccinimide gave the corresponding 4-bromo-3,5-dimethylpyrazole, 3-methyl-5-(bromomethyl)pyrazole and 4-bromo-3-methyl-5-(bromomethyl)pyrazole nucleosides. Structural assignments were made on basis of analytical and 1 H nmr spectral data. All of the bromomethylpyrazole nucleosides described showed cytostatic activity against HeLa cell sultures.  相似文献   

12.
Using 2-amino-5-chloro-3-fluoropyridine, two new copper halide coordination complexes and two new salts have been synthesized: [(3,5-FCAP)2CuCl2] (1), [(3,5-FCAP)2CuBr2](2), (3,5-FCAPH)2[CuCl4] (3) and (3,5-FCAPH)2[CuBr4] (4) [3,5-FCAP?=?2-amino-5-chloro-3-fluoropyridine; 3,5-FCAPH?=?2-amino-5-chloro-3-fluoropyridinium]. These complexes have been analyzed through single-crystal X-ray diffraction and temperature-dependent magnetic susceptibility. Compounds 1 and 2 crystallize in the triclinic space group P-1, while 3 and 4 crystallize in the monoclinic space group P21/c. All structures were distinct, with 1 giving a bihalide bridged chain, 2 yielding a halide bridged dimer, 3 forming a two-halide bridged chain via short Cl???Cl contacts, and 4 producing a rectangular sheet via short Br???Br contacts. All four compounds exhibit anti-ferromagnetic interactions and were fit to linear chain (1 and 3), dimer (2), and rectangular 2-D sheet (4) models. The resulting J/kB values are ?3.4(1), ?31.3(8), ?0.9(1), and ?9.46(6)?K with an α value (α?=?J?/J) of 0.06(2), respectively.  相似文献   

13.
5-bromo-2-fluoro-3-pyridylboronic acid (3) was prepared in high yield by ortho-lithiation of 5-bromo-2-fluoropyridine (1), followed by reaction with trimethylborate. Suzuki reaction of 3 with a range of aryl iodides gave 3-monosubstituted 5-bromo-2-fluoropyridines 4 in excellent yields. A second Suzuki reaction utilizing the bromo constituent of 4 with aryl and heteroaryl boronic acids provided 3,5-disubstituted 2-fluoropyridines 5, which in turn could be converted to the corresponding 2-pyridones 6.  相似文献   

14.
The sila-β-diketone, 2,2,6,6-tetramethyl-2-silaheptane-3,5-dione (tmshdH), was synthesized by the condensation of the anion of 2-trimethylsilyl-1,3-dithiane with 1-bromo-3,3-dimethylbutan-2-one, followed by unmasking of the latent carbonyl moiety with HgO/HgCl2. A monoclinic polymorph of the known copper(II) complex, Cu(tmshd)2, was crystallized and studied by X-ray diffraction methods and found to be disordered like the orthorhombic one. Attempts to synthesize the disilylated β-diketone, 2,2,6,6-tetramethyl-2,6-disilaheptane-3,5-dione and monosilylated 4,4-dimethyl-4-sila-3-oxo-pentanal using the dithiane method were not successful. However, the 1,3-dithianyl precursors, along with the impurity 2,2-bis(trimethylsilyl)-2,2-bi-1,3-dithiane, were studied crystallographically. Large stereoelectronic and steric effects on the solid-state bonding parameters were observed for these molecules.  相似文献   

15.
Nitrosation of the oximes of 3-bromo-3-penten-2-one, 3-bromo-4-phenyl-3-buten-2-one, and 2-bromo-1,3-diphenyl-2-propen-1-one using sodium nitrite in acetic acid gave low yields of 4-pyrazolone 1,2-dioxides. Nitrosation using butyl nitrite in the presence of copper(II) sulfate and pyridine in aqueous ethanol produced insoluble copper complexes from which 3,5-dimethyl-, 3-methyl-5-phenyl-, and 3,5-diphenyl-4-bromo-1-hydroxypyrazole 2-oxides could be liberated by treatment with dilute potassium hydroxide, filtration, and acidification of the filtrate. High yields were obtained with the first two oximes, but, presumably due to unfavorable stereochemistry of the oxime, the diphenyl derivative gave a lower yield of the complex, accompanied by 4-bromo- and 4-nitro-3,5-diphenylisoxazole and 4-oximino-3,5-diphenyl-4,5-dihydroisoxazole.  相似文献   

16.
Preparation of a number of derivatives of 2-amino-5-bromo-6-phenyl-4(3H)-pyrimidinone (ABPP) including the 2-dialkylaminoalkylamino-, 2-hydroxyalkylamino-, 2-ethoxycarbonylamino- and 2-alkylaminocarbonyl-amino- groups substituted on the pyrimidine ring as well as preparation of 1-(alkylaminoalkyl)-4,6-dioxo-8-phenyl-2,3,4,6-tetrahydro-1H-pyrimido[1,2-α]pyrimidines and 3,5-dioxo-7-phenyl-1,2,3,5-tetrahydroimidazo-[1,2-α]pyrimidines with or without the bromo-substitution are reported.  相似文献   

17.
A new pyridone dianion was prepared by halogen-metal exchange from 5-bromo-1,2-dihydro-2-oxo-3-pyrid-inecarboxylic acid, t-butyl ester and two equivalents of n-butyllithium. This 1,5-dianion readily reacted at C5 with electrophiles. Quenching with carbon dioxide gave the previously unreported 1,2-dihydro-2-oxo-3,5-pyridine dicarboxylic acid, 3-t-butyl ester. The 5-carboxyl groups were selectively converted to the ethyl ester and the ethyl amide through the 5-imidazolide. The 3-t-butyl ester was easily removed from all derivatives with acid hydrolysis.  相似文献   

18.
Cycloadditions of the α,β-unsaturated-acyl cyanides 1–3 with (Z)-or (E)-1-bromo-2-ethoxyethene ( 4 ) may be performed at moderate temperatures and provide in good yields the 3-bromo-2-ethoxy-3,4-dihydro-2H-pyran-6-carbonitriles 5–7 , respectively (Scheme 1). Diastereoisomeric pairs of products result at room temperature merely from the ‘endo’- and ‘exo’-transition states; more complex mixtures appear above 60° as a consequence of (Z)/(E)-isomerization of 4 . The relative stability of the anomers of 5 and 6 is explored by treatment with BF3·Et2O. Acid alcoholysis (MeOH or EtOH) of 5 leads to acetals 9a , b of 4-bromo-5-oxopentanoate. Alkyl (2Z,4E)-5-ethoxypenta-2,4-dienoates 12 , 17 , and 20 , are formed in alcoholic alkoxide solutions from 5 , 6 , and 7 , respectively, which is compatible with the intermediacy of 2-alkoxy-2H-pyrans and their valence tautomers, α,β-unsaturatedacyl cyanides. Methoxide addition to the CN group competes with dehydrobromination in case of 5 ; it leads to 3-bromo-3,4-dihydro-2H-pyran-6-carboximidate 13 (ca. 50% at ?20°) which can be hydrolyzed to the methyl carboxylate 14 . DBU (1,8-diazabicyclo[5,4,0]undec-7-ene) in benzene converts 5 to 6-ethoxy-2-oxohexa-3,5-dienenitrile ( 11 ), the ring-opening product of an obviously unstable 2-ethoxy-2H-pyran; the same reagent dehydrobrominates 6 to 2-ethoxy-4-methyl-2H-pyran-6-carbonitrile ( 15 ). HBr Elimination from 7 takes place with great ease in presence of pyridine, or even during chromatography on alumina, and leads to the stable ethyl 6-cyano-2-ethoxy-2H-pyran-4-carboxylate ( 18 ); this dimerizes at room temperature to give a 1:3 mixture of tricyclic adducts ‘endo’- 21 and ‘exo’- 21 . The structure of the latter is established by an X-ray crystallographic analysis.  相似文献   

19.
The ion-pair reversed-phase chromatography of some transition metal chelates with 2-(3,5-dibromo-2-pyridylazo)-5-[N-ethyl-N-(3-sulphopropyl)amino]phenol (3,5-diBr-PAESPAP) was studied. 3,5-DiBr-PAESPAP and its V(V), Cr(III), Fe(II), Co(III) and Ni(II) chelates were retained on and the copper (II), zinc(II) and cadmium(II) chelates dissociated in an ODS column using acetonitrile/water (37+63, v/v) (pH 7.0) containing 0.01 M acetate, 0.01 M 3-(N-morpholino)propanesulphonate buffer (pH 7.0) and 0.05 M Na+ as mobile phase. The chromatograms of 3,5-diBr-PAESPAP chelates were compared with those of the chelates with 2-(3,5-dibromo- 2-pyridylazo)-5-[N-(3-sulphopropyl)amino]phenol (3,5-diBr-PASPAP),2-(5-bromo-2- pyridylazo)-5-[N-(3-sulphopropyl)amino]phenol and 2-(5-bromo-2-pyridylazo)-5-[N-propyl-N- (3-sulphopropyl)amino] phenol. With 3,5-diBr-PAESPAP the Fe(II) and Ni(II) chelates were not resolved, but resolution was achieved with 3,5-diBr-PASPAP. The calibration graphs were linear over the ranges 2.0–10.0 ng (10-μl injection) of Fe, Ni and Co and for 20–100 ng (10-μl injection) for V with 3,5-diBr-PAESPAP and 3,5-diBr-PASPAP.  相似文献   

20.
The kinetics of 2-bromo-3-methylbutyric acid in the gas phase was studied over the temperature range of 309.3–357.0°C and pressure range of 15.5–100.0 torr. This process, in seasoned static reaction vessels and in the presence of the free radical inhibitor cyclohexene, is homogeneous, unimolecular, and follows first-order rate law. The observed rate coefficients are represented by the following Arrhenius equations: log k1(s?1) = (12.72 ± 0.25) ? (181.8 ± 2.9) kJ mol?1 (2.303RT)?1. The primary products are isobutyraldehyde, CO, and HBr. The polar five-membered cyclic transition state type of mechanism appears to be preferred in the dehydrohalogenation process of α-haloacids in the gas phase. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号