首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We prove, among other things, that if the acoustic tensor satisfies a suitable growth condition at infinity (the hyperbolicity condition) and the total initial energy is summable with a suitable weight, then the solution to the initial boundary value problem of linear elastodynamics in unbounded domains decays at infinity, at every instant, with a rate depending on the weight. Moreover, we show that the hyperbolicity condition is necessary and sufficient for the equipartition in mean of the total energy.  相似文献   

2.
The exact linear three-dimensional equations for a elastically monoclinic (13 constant) plate of constant thickness are reduced without approximation to a single 4th order differential equation for a thickness-weighted normal displacement plus two auxiliary equations for weighted thickness integrals of a stress function and the normal strain. The 4th order equation is of the same form as in classical (Kirchhoff) theory except the unknown is not the midsurface normal displacement. Assuming a solution of these plate equations, we construct so-called modified Saint-Venant solutions—“modified” because they involve non-zero body and surface loads. That is, solutions of the exact three-dimensional elasticity equations that exhibit no boundary layers and that are subject to a special set of body and surface loads that leave the analogous plate loads arbitrary.  相似文献   

3.
The interior transmission problem (ITP), which plays a fundamental role in inverse scattering theories involving penetrable defects, is investigated within the framework of mechanical waves scattered by piecewise-homogeneous, elastic or viscoelastic obstacles in a likewise heterogeneous background solid. For generality, the obstacle is allowed to be multiply connected, having both penetrable components (inclusions) and impenetrable parts (cavities). A variational formulation is employed to establish sufficient conditions for the existence and uniqueness of a solution to the ITP, provided that the excitation frequency does not belong to (at most) countable spectrum of transmission eigenvalues. The featured sufficient conditions, expressed in terms of the mass density and elasticity parameters of the problem, represent an advancement over earlier works on the subject in that (i) they pose a precise, previously unavailable provision for the well-posedness of the ITP in situations when both the obstacle and the background solid are heterogeneous, and (ii) they are dimensionally consistent, i.e., invariant under the choice of physical units. For the case of a viscoelastic scatterer in an elastic solid it is further shown, consistent with earlier studies in acoustics, electromagnetism, and elasticity that the uniqueness of a solution to the ITP is maintained irrespective of the vibration frequency. When applied to the situation where both the scatterer and the background medium are viscoelastic, i.e., dissipative, on the other hand, the same type of analysis shows that the analogous claim of uniqueness does not hold. Physically, such anomalous behavior of the “viscoelastic-viscoelastic” case (that has eluded previous studies) has its origins in a lesser known fact that the homogeneous ITP is not mechanically insulated from its surroundings—a feature that is particularly cloaked in situations when either the background medium or the scatterer are dissipative. A set of numerical results, computed for ITP configurations that meet the sufficient conditions for the existence of a solution, is included to illustrate the problem. Consistent with the preceding analysis, the results indicate that the set of transmission values is indeed empty in the “elastic-viscoelastic” case, and countable for “elastic-elastic” and “viscoelastic-viscoelastic” configurations.  相似文献   

4.
M. S. Matbuly 《Meccanica》2009,44(5):547-554
The present work concerns with the multiple crack propagation along the interface of two bonded dissimilar strips. The crack faces are subjected to anti-plane shear traction. Galilean transformation is employed to reduce the problem to a quasi-static one. Then, using Fourier transforms and asymptotic analysis, the quasi-static problem is reduced to a pair of singular integral equations. That are solved numerically, using Gauss-Chebyshev integration formulae. The values of the dynamic stress intensity factors are obtained and compared with the previous similar works. Further, a parametric study is introduced to investigate the effect of crack growth rate, geometric and elastic characteristics of the composite on the values of dynamic stress intensity factors.  相似文献   

5.
By definition, the principal problem of the two-dimensional theory of elasticity consists in solving the equation for the Airy’s stress function in a region with its first order derivatives assigned at a boundary. In this paper, an indirect formulation of this problem based on integral equations with weakly singular kernels is proposed. In a bounded region with a Lyapunov boundary it is reduced to the solution of weakly singular integral equations. Differential properties of its solution are investigated.  相似文献   

6.
Prior studies have indicated that heavy alcohol drinkers are likely to engage in risky sexual behaviours and thus, more likely to get sexually transmitted infections (STIs) than social drinkers. Here, we formulate a deterministic model for evaluating the impact of heavy alcohol drinking on the reemerging gonorrhea epidemic. The model is rigorously analysed, showing the existence of a globally asymptotically stable disease-free equilibrium whenever the reproductive number is less than unity. If the disease threshold number is greater than unity, a unique endemic equilibrium exists and is globally asymptotically stable in the interior of the feasible region and the disease persists at endemic proportions if it is initially present. Both analytical and numerical results are provided to ascertain whether heavy alcohol drinking has an impact on the transmission dynamics of gonorrhea.  相似文献   

7.
In this paper, we numerically investigate the hyperchaotic behaviors in the fractional-order Chen hyperchaotic systems. By utilizing the fractional calculus techniques, we find that hyperchaos exists in the fractional-order Chen hyperchaotic system with the order less than 4. We found that the lowest order for hyperchaos to have in this system is 3.72. Our results are validated by the existence of two positive Lyapunov exponents. The generalized projective synchronization method is also presented for synchronizing the fractional-order Chen hyperchaotic systems. The present technique is based on the Laplace transform theory. This simple and theoretically rigorous synchronization approach enables synchronization of fractional-order hyperchaotic systems to be achieved and does not require the computation of the conditional Lyapunov exponents. Numerical simulations are performed to verify the effectiveness of the proposed synchronization scheme.  相似文献   

8.
In this note we study the condition of strong ellipticity under changes in the current and reference configuration for the finite hyperelastostatic case. The outcome is that strong ellipticity is preserved provided one adjusts the vectors used in the definition of this condition accordingly.  相似文献   

9.
To overcome the shortcomings of extreme time-consuming in solving the Reynolds equation, two efficient calculation methods, based on the free boundary theory and variational principles for the unsteady nonlinear Reynolds equation in the condition of Reynolds boundary, are presented in the paper. By employing the two mentioned methods, the nonlinear dynamic forces as well as their Jacobians of the journal bearing can be calculated saving time but with the same accuracy. Of these two methods, the one is called a Ritz model which manipulates the cavitation region by simply introducing a parameter to match the free boundary condition and, as a result, a very simple approximate formulae of oil-film pressure is being obtained. The other one is a one-dimensional FEM method which reduces the two-dimensional variational inequality to the one-dimensional algebraic complementary equations, and then a direct method is being used to solve these complementary equations, without the need of iterations, and the free boundary condition can be automatically satisfied. Meanwhile, a new order reduction method is contributed to reduce the degrees of freedom of a complex rotor-bearing system. Thus the nonlinear behavior analysis of the rotor-bearing system can be studied time-sparingly. The results in the paper show the high efficiency of the two methods as well as the abundant nonlinear phenomenon of the system, compared with the results obtained by the usual numerical solution of the Reynolds equation.  相似文献   

10.
Bifurcations and route to chaos of the Mathieu–Duffing oscillator are investigated by the incremental harmonic balance (IHB) procedure. A new scheme for selecting the initial value conditions is presented for predicting the higher order periodic solutions. A series of period-doubling bifurcation points and the threshold value of the control parameter at the onset of chaos can be calculated by the present procedure. A sequence of period-doubling bifurcation points of the oscillator are identified and found to obey the universal scale law approximately. The bifurcation diagram and phase portraits obtained by the IHB method are presented to confirm the period-doubling route-to-chaos qualitatively. It can also be noted that the phase portraits and bifurcation points agree well with those obtained by numerical time-integration.  相似文献   

11.
In this paper we justify a two-dimensional evolution and eigenvalue model for micropolar plates starting from three-dimensional linearly micropolar elasticity. A small parameter representing the thickness of the plate-like body is introduced in the problem. The asymptotics of the evolution and eigenvalue problems is then developed as this small parameter tends to zero. First the appropriate convergences of the eigenpairs of the three-dimensional problem to the eigenpairs of the two-dimensional eigenvalue problem for micropolar plates is shown. Then these convergences are used in the Fourier method to obtain the convergences of the solution of the three-dimensional evolution problem to the solution of the two-dimensional evolution plate model.   相似文献   

12.
The polar method is a minimal invariant representation in plane elasticity. A plane orthotropic elastic behaviour is expressed by five polar invariants related to the elastic symmetries. In this paper, considering the orthotropy orientation and the polar invariants as optimisation parameters, we discuss the problem of minimising the elastic energy for a given state of stress. The minimisation with respect to the orientation is solved in order to find the associated optimal elastic energy for given polar invariants. Then, this quantity is minimised with respect to the polar invariants which characterise the magnitude of the anisotropic components of the elastic stiffness tensor. Optimal uncoupled composite laminates corresponding to this optimum are presented for membrane and bending loadings.  相似文献   

13.
A visco-elastoplastic model for the impact between a compact body and a composite target is presented. The model is a combination of a nonlinear contact law that includes energy loss due to plastic deformation and a viscous element that accounts for energy losses due to wave propagation and/or damping. The governing nonlinear equations are solved numerically to obtain the response. A piecewise linear version of the model is also presented, which facilitates analytical solution. The model predictions are compared to those of the well-known and commonly used Hunt–Crossley model. The effects of the various impact parameters, such as impactor mass, velocity, plasticity, and damping, on the impact response and coefficient of restitution are investigated. The model appears to be suitable for a wide range of impact situations, with parameters that are well defined and easily calculated or measured. Furthermore, the resulting coefficient of restitution is shown to be a function of impact velocity and damping, as confirmed by published experimental data.  相似文献   

14.
The response function of a network of springs and masses, an elastodynamic network, is the matrix valued function W(ω), depending on the frequency ω, mapping the displacements of some accessible or terminal nodes to the net forces at the terminals. We give necessary and sufficient conditions for a given function W(ω) to be the response function of an elastodynamic network, assuming there is no damping. In particular we construct an elastodynamic network that can mimic a suitable response in the frequency or time domain. Our characterization is valid for networks in three dimensions and also for planar networks, which are networks where all the elements, displacements and forces are in a plane. The network we design can fit within an arbitrarily small neighborhood of the convex hull of the terminal nodes, provided the springs and masses occupy an arbitrarily small volume. Additionally, we prove stability of the network response to small changes in the spring constants and/or addition of springs with small spring constants.  相似文献   

15.
L. Ding  C. Hou 《Nonlinear dynamics》2010,60(1-2):131-139
It is a significant issue to control bifurcation because many neuronal diseases have close relevance to bifurcation of neuron system. Some studies have been done on bifurcation control in the Hodgkin–Huxley (HH) model, but there is no clear mathematical criterion for bifurcation stabilization. In this paper, according to Routh–Hurwitz stability criterion, we employ linear control term of washout filter-aided dynamic feedback controller to stabilize bifurcation of the HH model. As a result, we can deduce linear control gain based on the criterion, and simulation shows the method is effective for making the HH model stable. The controller designs described here are achieved by electrical stimulus, so it may have potential applications in the diagnosis and therapy of dynamical diseases.  相似文献   

16.
The paper deals with the problem of existence of the minimum path for movable end-points in the one-of-degree-of-freedom mechanical system. The criteria for obtaining of extremum path for movable end-points is extended with new criteria for minimum. The nonsimultaneous variational calculus is applied. It is assumed that the actual path belongs to sub-set C 2 of admissible curves. The series expansion up to the second order small values is applied and the first and the second variation of functional are calculated. It is proved that the necessary and sufficient conditions for the minimum path are that the first order variation is zero and the second order variation is positive. The second conditions are based on the arbitrary solution of Riccati’s differential equation and also the known Legender’s and Jacobi criteria for minimum for the case of fixed end-points. Two examples are solved: the problem of the minimal length of a curve joining two fixed boundary curves and problem of motion of a particle between variable boundaries for which the Hamilton action integral is minimal.  相似文献   

17.
We generate conservation laws for the Burridge–Knopoff equation which model nonlinear dynamics of earthquake faults by a new conservation theorem proposed recently by Ibragimov. One can employ this new general theorem for every differential equation (or systems) and derive new local and nonlocal conservation laws. Nonlocal conservation laws comprise nonlocal variables defined by the adjoint equations to the Burridge–Knopoff equation.  相似文献   

18.
In this paper the physically-based approach to non-local elasticity theory is introduced. It is formulated by reverting the continuum to an ensemble of interacting volume elements. Interactions between adjacent elements are classical contact forces while long-range interactions between non-adjacent elements are modelled as distance-decaying central body forces. The latter are proportional to the relative displacements rather than to the strain field as in the Eringen model and subsequent developments. At the limit the displacement field is found to be governed by an integro-differential equation, solved by a simple discretization procedure suggested by the underlying mechanical model itself, with corresponding static boundary conditions enforced in a quite simple form. It is then shown that the constitutive law of the proposed model coalesces with the Eringen constitutive law for an unbounded domain under suitable assumptions, whereas it remains substantially different for a bounded domain. Thermodynamic consistency of the model also has been investigated in detail and some numerical applications are presented for different parameters and different functional forms for the decay of the long range forces. For simplicity, the problem is formulated for a 1D continuum while the general formulation for a 3D elastic solid has been reported in the appendix.  相似文献   

19.
This investigation is concerned with the use of an implicit integration method with adjustable numerical damping properties in the simulation of flexible multibody systems. The flexible bodies in the system are modeled using the finite element absolute nodal coordinate formulation (ANCF), which can be used in the simulation of large deformations and rotations of flexible bodies. This formulation, when used with the general continuum mechanics theory, leads to displacement modes, such as Poisson modes, that couple the cross section deformations, and bending and extension of structural elements such as beams. While these modes can be significant in the case of large deformations, and they have no significant effect on the CPU time for very flexible bodies; in the case of thin and stiff structures, the ANCF coupled deformation modes can be associated with very high frequencies that can be a source of numerical problems when explicit integration methods are used. The implicit integration method used in this investigation is the Hilber–Hughes–Taylor method applied in the context of Index 3 differential-algebraic equations (HHT-I3). The results obtained using this integration method are compared with the results obtained using an explicit Adams-predictor-corrector method, which has no adjustable numerical damping. Numerical examples that include bodies with different degrees of flexibility are solved in order to examine the performance of the HHT-I3 implicit integration method when the finite element absolute nodal coordinate formulation is used. The results obtained in this study show that for very flexible structures there is no significant difference in accuracy and CPU time between the solutions obtained using the implicit and explicit integrators. As the stiffness increases, the effect of some ANCF coupled deformation modes becomes more significant, leading to a stiff system of equations. The resulting high frequencies are filtered out when the HHT-I3 integrator is used due to its numerical damping properties. The results of this study also show that the CPU time associated with the HHT-I3 integrator does not change significantly when the stiffness of the bodies increases, while in the case of the explicit Adams method the CPU time increases exponentially. The fundamental differences between the solution procedures used with the implicit and explicit integrations are also discussed in this paper.  相似文献   

20.
We report a Periodicity-Detection algorithm, implemented in a LabVIEW routine for real-time data analysis on experimental chaos, to evaluate the periodicity P of experimental time series. The Periodicity-Detector (PD) algorithm was applied to the forced Chua’s circuit with the aim to build the Periodicity-parameter-space (P-parameter-space). As results of the P-parameter-space, we could observe very complex dynamical behaviors, as regions of periodic structures, a new sequence of accumulation boundary, and the periodic structures organizing themselves in a period-adding bifurcation cascade. Those results agree with the maximal Lyapunov exponent and the bifurcation diagram analysis, presented in a previous work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号