首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 916 毫秒
1.
We consider the bidimensional Stokes problem for incompressible fluids in stream function‐vorticity form. The classical finite element method of degree one usually used does not allow the vorticity on the boundary of the domain to be computed satisfactorily when the meshes are unstructured and does not converge optimally. To better approach the vorticity along the boundary, we propose that harmonic functions obtained by integral representation be used. Numerical results are very satisfactory, and we prove that this new numerical scheme leads to an optimal convergence rate of order 1 for the natural norm of the vorticity and, under higher regularity assumptions, from 3/2 to 2 for the quadratic norm of the vorticity. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2004.  相似文献   

2.
We consider the bidimensional Stokes problem for incompressible fluids in stream function-vorticity formulation. For this problem, the classical finite elements method of degree one converges only in O(h) for the quadratic norm of the vorticity, if the domain is convex and the solution regular. We propose to use harmonic functions obtained by a simple layer potential to approach vorticity along the boundary. Numerical results are very satisfying and we prove that this new numerical scheme leads to an error of order O(h) for the natural norm of the vorticity and under more regularity assumptions from O(h3/2) to O(h2) for the quadratic norm of the vorticity. To cite this article: T. Abboud et al., C. R. Acad. Sci. Paris, Ser. I 334 (2002) 71–76  相似文献   

3.
Summary. We develop the a posteriori error analysis for the RFB method, applied to the linear advection-diffusion problem: the numerical error, measured in suitable norms, is estimated in terms of the numerical residual. The robustness is investiged, in the sense that we prove uniform equivalence between a norm of the numerical residual and a particular norm of the error. Received January 21, 2000 / Published online March 20, 2001  相似文献   

4.
In this article we analyze the L2 least‐squares finite element approximations to the incompressible inviscid rotational flow problem, which is recast into the velocity‐vorticity‐pressure formulation. The least‐squares functional is defined in terms of the sum of the squared L2 norms of the residual equations over a suitable product function space. We first derive a coercivity type a priori estimate for the first‐order system problem that will play the crucial role in the error analysis. We then show that the method exhibits an optimal rate of convergence in the H1 norm for velocity and pressure and a suboptimal rate of convergence in the L2 norm for vorticity. A numerical example in two dimensions is presented, which confirms the theoretical error estimates. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2004  相似文献   

5.
We study the possibility of using fast matrix multiplication methods for the approximation of the velocity field when solving the system of differential equations describing the vorticity transport in an ideal incompressible fluid in Lagrangian coordinates. We suggest a numerical scheme that permits effectively using the fast matrix multiplication (the method of mosaic-skeleton approximations). We show that the functions used for the computation of the velocity field and moving grids appearing in the solution of the problem permit one to use the above-mentioned method. We prove the convergence of the resulting numerical solution to the exact solution with regard of the error contributed by the use of the algorithm for approximate fast multiplication of matrices by vectors.  相似文献   

6.
In this paper, we explore the effect of numerical integration on the Galerkin meshless method used to approximate the solution of an elliptic partial differential equation with non-constant coefficients with Neumann boundary conditions. We considered Galerkin meshless methods with shape functions that reproduce polynomials of degree k?≥?1. We have obtained an estimate for the energy norm of the error in the approximate solution under the presence of numerical integration. This result has been established under the assumption that the numerical integration rule satisfies a certain discrete Green’s formula, which is not problem dependent, i.e., does not depend on the non-constant coefficients of the problem. We have also derived numerical integration rules satisfying the discrete Green’s formula.  相似文献   

7.
We present an a posteriori error estimator for a mixed finite element method for the Reissner-Mindlin plate model. The finite element method we deal with, was analyzed by Durán and Liberman in 1992 and can also be seen as a particular example of the general family analyzed by Brezzi, Fortin, and Stenberg in 1991. The estimator is based on the evaluation of the residual of the finite element solution. We show that the estimator yields local lower and global upper bounds of the error in the numerical solution in a natural norm for the problem, which includes the norms of the terms corresponding to the deflection and the rotation and a dual norm for the shearing force. The estimates are valid uniformly with respect to the plate thickness.

  相似文献   


8.
9.
In this paper we present a new method to solve the 2D generalized Stokes problem in terms of the stream function and the vorticity. Such problem results, for instance, from the discretization of the evolutionary Stokes system. The difficulty arising from the lack of the boundary conditions for the vorticity is overcome by means of a suitable technique for uncoupling both variables. In order to apply the above technique to the Navier–Stokes equations we linearize the advective term in the vorticity transport equation as described in the development of the paper. We illustrate the good performance of our approach by means of numerical results, obtained for benchmark driven cavity problem solved with classical piecewise linear finite element.  相似文献   

10.
Yao Sun  Fuming Ma 《Applicable analysis》2013,92(12):2647-2667
In this paper, we establish new density result for the Navier equation. Based on the denseness of the elastic single-layer potential functions, the Cauchy problem for the Navier equation is investigated. The ill-posedness of this problem is given via the compactness of the operator defined by the potential function. The method combines the Newton’s method and minimum norm solution with discrepancy principle to solve an inverse problem. Convergence and stability estimates are then given with some examples for numerical verification on the efficiency of the proposed method.  相似文献   

11.
In this paper, we present two adaptive methods for the basis enrichment of the mixed Generalized Multiscale Finite Element Method (GMsFEM) for solving the flow problem in heterogeneous media. We develop an a-posteriori error indicator which depends on the norm of a local residual operator. Based on this indicator, we construct an offline adaptive method to increase the number of basis functions locally in coarse regions with large local residuals. We also develop an online adaptive method which iteratively enriches the function space by adding new functions computed based on the residual of the previous solution and special minimum energy snapshots. We show theoretically and numerically the convergence of the two methods. The online method is, in general, better than the offline method as the online method is able to capture distant effects (at a cost of online computations), and both methods have faster convergence than a uniform enrichment. Analysis shows that the online method should start with a certain number of initial basis functions in order to have the best performance. The numerical results confirm this and show further that with correct selection of initial basis functions, the convergence of the online method can be independent of the contrast of the medium. We consider cases with both very high and very low conducting inclusions and channels in our numerical experiments.  相似文献   

12.
We consider some algorithms for unconstrained minimization without derivatives that form linear or quadratic models by interpolation to values of the objective function. Then a new vector of variables is calculated by minimizing the current model within a trust region. Techniques are described for adjusting the trust region radius, and for choosing positions of the interpolation points that maintain not only nonsingularity of the interpolation equations but also the adequacy of the model. Particular attention is given to quadratic models with diagonal second derivative matrices, because numerical experiments show that they are often more efficient than full quadratic models for general objective functions. Finally, some recent research on the updating of full quadratic models is described briefly, using fewer interpolation equations than before. The resultant freedom is taken up by minimizing the Frobenius norm of the change to the second derivative matrix of the model. A preliminary version of this method provides some very promising numerical results. Presented at NTOC 2001, Kyoto, Japan.  相似文献   

13.
We consider the formulation of the Stokes problem in a multiply connected two-dimensional domain where the unknowns are the stream-function and the vorticity. We derive its equivalence with a finite system of several variational problems. This leads to the construction of a finite element discretization of this problem. The analysis and a numerical experiment prove the convergence of the method. To cite this article: M. Amara et al., C. R. Acad. Sci. Paris, Ser. I 342 (2006).  相似文献   

14.
Summary. We apply the boundary element methods (BEM) to the interior Dirichlet problem of the two dimensional Laplace equation, and its discretization is carried out with the collocation method using piecewise linear elements. In this paper, some precise asymptotic estimations for the discretization matrix (where denotes the division number) are investigated. We show that the maximum norm of and the condition number of have the forms: and , respectively, as , where the constants and are explicitly given in the proof. Although these estimates indicate illconditionedness of this numerical computation, the -convergence of this scheme with maximum norm is proved as an application of the main results. Received January 25, 1993 / Revised version received March 13, 1995  相似文献   

15.
We develop and analyze a first-order system least-squares spectral method for the second-order elhptic boundary value problem with variable coefficients. We first analyze the Chebyshev weighted norm least-squares functional defined by the sum of the Lw^2- and Hw^-1- norm of the residual equations and then we eplace the negative norm by the discrete negative norm and analyze the discrete Chebyshev weighted least-squares method. The spectral convergence is derived for the proposed method. We also present various numerical experiments. The Legendre weighted least-squares method can be easily developed by following this paper.  相似文献   

16.
Convergence of Newton's method for convex best interpolation   总被引:7,自引:0,他引:7  
Summary. In this paper, we consider the problem of finding a convex function which interpolates given points and has a minimal norm of the second derivative. This problem reduces to a system of equations involving semismooth functions. We study a Newton-type method utilizing Clarke's generalized Jacobian and prove that its local convergence is superlinear. For a special choice of a matrix in the generalized Jacobian, we obtain the Newton method proposed by Irvine et al. [17] and settle the question of its convergence. By using a line search strategy, we present a global extension of the Newton method considered. The efficiency of the proposed global strategy is confirmed with numerical experiments. Received October 26, 1998 / Revised version received October 20, 1999 / Published online August 2, 2000  相似文献   

17.
This paper is devoted to analyze a splitting method for solving incompressible inviscid rotational flows. The problem is first recast into the velocity–vorticity–pressure formulation by introducing the additional vorticity variable, and then split into three consecutive subsystems. For each subsystem, the L2L2 least-squares finite element approach is applied to attain accurate numerical solutions. We show that for each time step this splitting least-squares approach exhibits an optimal rate of convergence in the H1H1 norm for velocity and pressure, and a suboptimal rate in the L2L2 norm for vorticity. A numerical example in two dimensions is presented, which confirms the theoretical error estimates.  相似文献   

18.
Two-parameter extremum problems of boundary control are formulated for the stationary thermal convection equations with Dirichlet boundary conditions for velocity and with mixed boundary conditions for temperature. The cost functional is defined as the root mean square integral deviation of the desired velocity (vorticity, or pressure) field from one given in some part of the flow region. Controls are the boundary functions involved in the Dirichlet condition for velocity on the boundary of the flow region and in the Neumann condition for temperature on part of the boundary. The uniqueness of the extremum problems is analyzed, and the stability of solutions with respect to certain perturbations in the cost functional and one of the functional parameters of the original model is estimated. Numerical results for a control problem associated with the minimization of the vorticity norm aimed at drag reduction are discussed.  相似文献   

19.
This paper deals with the singularly perturbed boundary value problem for a linear second-order delay differential equation. For the numerical solution of this problem, we use an exponentially fitted difference scheme on a uniform mesh which is accomplished by the method of integral identities with the use of exponential basis functions and interpolating quadrature rules with weight and remainder term in integral form. It is shown that one gets first order convergence in the discrete maximum norm, independently of the perturbation parameter. Numerical results are presented which illustrate the theoretical results.  相似文献   

20.
The nuclear norm minimization problem is to find a matrix with the minimum nuclear norm subject to linear and second order cone constraints. Such a problem often arises from the convex relaxation of a rank minimization problem with noisy data, and arises in many fields of engineering and science. In this paper, we study inexact proximal point algorithms in the primal, dual and primal-dual forms for solving the nuclear norm minimization with linear equality and second order cone constraints. We design efficient implementations of these algorithms and present comprehensive convergence results. In particular, we investigate the performance of our proposed algorithms in which the inner sub-problems are approximately solved by the gradient projection method or the accelerated proximal gradient method. Our numerical results for solving randomly generated matrix completion problems and real matrix completion problems show that our algorithms perform favorably in comparison to several recently proposed state-of-the-art algorithms. Interestingly, our proposed algorithms are connected with other algorithms that have been studied in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号