首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Residual dipolar couplings between spin-1/2 and quadrupolar nuclei are often observed and exploited in the magic-angle spinning (MAS) NMR spectra of spin-1/2 nuclei. These orientation-dependent splittings contain information on the dipolar interaction, which can be translated into structural information. The same type of splittings may also be observed for pairs of quadrupolar nuclei, although information is often difficult to extract from the quadrupolar-broadened lineshapes. Here, the complete theory for describing the dipolar coupling between two quadrupolar nuclei in the frequency domain by Hamiltonian diagonalization is given. The theory is developed under MAS and double-rotation (DOR) conditions, and is valid for any spin quantum numbers, quadrupolar coupling constants, asymmetry parameters, and tensor orientations at both nuclei. All terms in the dipolar Hamiltonian become partially secular and contribute to the NMR spectrum. The theory is validated using experimental 11B and 35/37Cl NMR experiments carried out on powdered B-chlorocatecholborane, where both MAS and DOR are used to help separate effects of the quadrupolar interaction from those of the dipolar interaction. It is shown that the lineshapes are sensitive to the quadrupolar coupling constant of both nuclei and to the J coupling (including its sign). From these experiments, the dipolar coupling constant for a heteronuclear spin pair of quadrupolar nuclei may be obtained as well as the sign of the quadrupolar coupling constant of the perturbing nucleus; these are two parameters that are difficult to obtain experimentally otherwise.  相似文献   

2.
We report a solid-state 17O NMR study of the 17O electric-field-gradient (EFG) and chemical shielding (CS) tensors for the carboxyl oxygen in an l-alanine hydrochloride. Using [17O]- and [13C,17O]-L-alanine hydrochlorides, both the magnitudes and the orientations in the molecular frame of the 17O EFG and CS tensors could be determined by the analysis of the 17O magic-angle spinning (MAS) and stationary NMR spectra. For the carbonyl oxygen, the smallest EFG tensor component, V(XX), and the largest EFG component, V(ZZ), roughly lies in the carboxyl molecular plane and the direction of V(XX) is parallel to the dipolar vector between 13C and 17O, that is, the direction of CO bond. The angles between the intermediate EFG component, VYY, and delta33 component, and between delta22 component and VZZ are found to be approximately 10 degrees and 35 degrees , respectively. We also present the results of the quantum chemical calculations for a theoretical hydrogen-bonding model, indicating that hydrogen-bonding strengths make it possible to vary both magnitudes and orientations of the carbonyl 17O EFG tensors in amino acid hydrochlorides.  相似文献   

3.
Solid-state 17O NMR spectra were obtained at 4.70, 11.75 and 19.60T for potassium hydrogen [17O(4)]dibenzoate (PHB) under both magic-angle spinning and stationary conditions. Spectral analyses yielded both the magnitude and orientation of the 17O chemical shift (CS) tensor and the electric field gradient (EFG) tensor for each of the two chemically distinct oxygen sites in PHB. For the oxygen site that is not involved in hydrogen bonding, the experimental 17O NMR tensors are: delta(iso)=287+/-2 ppm, delta(11)=470+/-5 ppm, delta(22)=380+/-5 ppm, delta(33)=10+/-5 ppm, C(Q)=8.30+/-0.02 MHz, eta(Q)=0.23+/-0.05, alpha=0+/-5 degrees, beta=90+/-5 degrees, and gamma=30+/-5 degrees. For the oxygen site in the short O...H...O hydrogen bond, the experimental 17O NMR tensors are: delta(iso)=213+/-2 ppm, delta(11)=370+/-5 ppm, delta(22)=190+/-5 ppm, delta(33)=80+/-5 ppm, C(Q)=5.90+/-0.02 MHz, eta(Q)=0.55+/-0.05, alpha=5+/-5 degrees, beta=90+/-5 degrees, and gamma=90+/-5 degrees. Extensive quantum mechanical calculations at both restricted Hartree-Fock and density functional theory levels were performed to investigate the effects of an effectively symmetrical O...H...O hydrogen bond on 17O CS and EFG tensors.  相似文献   

4.
Experimental procedures are proposed and demonstrated that separate the spectroscopic contribution from both (47)Ti and (49)Ti in solid-state nuclear magnetic resonance spectra. These take advantage of the different nuclear spin quantum numbers of these isotopes that lead to different "effective" radiofrequency fields for the central transition nutation frequencies when these nuclei occur in sites with a significant electric field gradient. Numerical simulations and solid-state NMR experiments were performed on the TiO(2) polymorphs anatase and rutile. For anatase, the separation of the two isotopes at high field (21.1T) facilitated accurate determination of the electric field gradient (EFG) and chemical shift anisotropy (CSA) tensors. This was accomplished by taking advantage of the quadrupolar interaction between the EFG at the titanium site and the different magnitudes of the nuclear quadrupole moments (Q) of the two isotopes. Rutile, having a larger quadrupolar coupling constant (C(Q)), was examined by (49)Ti-selective experiments at different magnetic fields to obtain spectra with different scalings of the two anisotropic tensors. A small chemical shielding anisotropy (CSA) of -30 ppm was determined.  相似文献   

5.
The effect of dipolar coupling to 14N on 13C FIREMAT (five pi replicated magic angle turning) experiments is investigated. A method is developed for fitting the 13C FIREMAT FID employing the full theory to extract the 13C-14N dipolar and 13C chemical shift tensor information. The analysis requires prior knowledge of the electric field gradient (EFG) tensor at the 14N nucleus. In order to validate the method the analysis is done for the amino acids alpha-glycine, gamma-glycine, l-alanine, l-asparagine, and l-histidine on FIREMAT FIDs recorded at 13C frequencies of 50 and 100 MHz. The dipolar and chemical shift data obtained with this analysis are in very good agreement with the previous single-crystal 13C NMR results and neutron diffraction data on alpha-glycine, l-alanine, and l-asparagine. The values for gamma-glycine and l-histidine obtained with this new method are reported for the first time. The uncertainties in the EFG tensor on the resultant 13C chemical shift and dipolar tensor values are assessed.  相似文献   

6.
Multiple-quantum magic-angle spinning and double-rotation NMR techniques were applied in the high field of 17.6 T to the study of oxygen-17-enriched zeolites A and LSX with the ratio Si/Al = 1. A monotonic correlation between the isotropic value of the chemical shift and the Si-O-Al bond angle alpha (taken from X-ray data) could be found. Hydration of the zeolites causes a downfield 17O NMR chemical shift of about 8 ppm with respect to the dehydrated zeolites. Ion exchange of the hydrated zeolites generates stronger chemical shift effects. The increase of the basicity of the oxygen framework of the zeolite LSX is reflected by a downfield shift of approx. 10 ppm going from the lithium to the cesium form, and the substitution of sodium by thallium in the zeolite A causes a shift of 34 ppm for the O3 signal. 17O DOR NMR spectra are superior to 17O 3QMAS NMR spectra, featuring a resolution increase by a factor of 2 and are about equal with respect to the sensitivity. The residual linewidths of the signals in the 17O DOR and 17O 5QMAS NMR spectra can be explained by a distribution of the Si-O-Al angles in the zeolites.  相似文献   

7.
We have presented an experimental investigation of the carboxyl oxygen NMR parameters for four distinct sites in l-valine and l-isoleucine. The carboxyl (17)O quadrupolar coupling constant, C(Q), and isotropic chemical shift, delta(iso), for these compounds are obtained by analyzing two-dimensional (17)O multiple-quantum magic-angle spinning (MQMAS) and/or 1D MAS spectra. The values of C(Q) and delta(iso) found to be in the range of 7.00-7.85 MHz, and 264-314 ppm, respectively. Extensive quantum chemical calculations at the density functional levels have been performed for a full cluster of l-valine molecules and a few theoretical models. The calculated results indicated that there was a correlation between the (17)O NMR parameters and C-O bond lengths, which was helpful for the spectral assignment. They also demonstrated that the torsion angle of l-valine plays an important role in determining the magnitudes of (17)O NMR parameters.  相似文献   

8.
Application of the "quadrupolar Carr-Purcell Meiboom-Gill" (QCPMG) sequence permits the first natural abundance solid-state 25Mg NMR study of an organometallic magnesium compound, bis(cyclopentadienyl)magnesium. Analytical and numerical simulations of both static and magic-angle spinning QCPMG NMR spectra beget an axially symmetric 25Mg electric field gradient (EFG) tensor (quadrupolar asymmetry parameter, eta(Q)=0.01(1)) with a nuclear quadrupole coupling constant of C(Q)=5.80(5)MHz. Restricted Hartree-Fock and hybrid density functional theory (B3LYP) calculations are in good agreement with experimental EFG values and predict a chemical shielding anisotropy of about 40-50 ppm, which we attempt to elucidate by numerical simulations. The parameters and orientation of the 25Mg EFG tensor are rationalized from examination of the crystal structure and molecular symmetry. The NMR properties of the cyclopentadienyl rings are examined by 13C[1H] CPMAS NMR, RHF and hybrid-DFT (B3LYP) calculations, and simulations of the effects of chemical exchange on the 13C powder pattern.  相似文献   

9.
The experimental 13C NMR chemical shift components of uracil in the solid state are reported for the first time (to our knowledge), as well as newer data for the 15N nuclei. These experimental values are supported by extensive calculated data of the 13C, 15N and 17O chemical shielding and 17O and 14N electric field gradient (EFG) tensors. In the crystal, uracil forms a number of strong and weak hydrogen bonds, and the effect of these on the 13C and 15N chemical shift tensors is studied. This powerful combination of the structural methods and theoretical calculations gives a very detailed view of the strong and weak hydrogen bond formation by this molecule. Good calculated results for the optimized cluster in most cases (except for the EFG values of the 14N3 and 17O4 nuclei) certify the accuracy of our optimized coordinates for the hydrogen nuclei. Our reported RMSD values for the calculated chemical shielding and EFG tensors are smaller than those reported previously. In the optimized cluster the 6-311+G** basis set is the optimal one in the chemical shielding and EFG calculations, except for the EFG calculations of the oxygen nuclei, in which the 6-31+G** basis set is the optimal one. The optimal method for the chemical shielding and EFG calculations of the oxygen and nitrogen nuclei is the PW91PW91 method, while for the chemical shielding calculations of the 13C nuclei the B3LYP method gives the best results.  相似文献   

10.
Although high-resolution NMR spectra can be obtained in solids, the use of27Al NMR to investigate the structure of aluminosilicate and aluminophosphate molecular sieves has been severely limited because anisotropic second-order quadrupolar interactions, responsible for spectral broadening, cannot be eliminated by conventional magic angle spinning (MAS) or multiple pulse techniques. Here we give the principles of the double rotation (DOR) NMR technique which can remove not only the first-order broadenings but also the second-order broadenings in the NMR spectra of quadrupolar nuclei in solids. High-resolution27Al NMR using DOR is capable of resolving discrete framework aluminum sites in aluminophosphate molecular sieves, permitting quantitative investigation of site-specific adsorbate-host interactions, and of discriminating different aluminum species in zeolites.  相似文献   

11.
The (1)H NMR spectrum of glycine in stretched gelatin gel and in cromolyn liquid crystal displays a well-resolved doublet due to (1)H-(1)H dipolar interaction. Multiple spectra were obtained within a wide range of offset frequencies of partially saturating radio-frequency (RF) radiation to generate steady-state irradiation envelopes or z-spectra of glycine. Maximal suppression of the doublet occurred when the irradiation was applied exactly at the centre frequency, between the two glycine peaks. This phenomenon is due to double-quantum transitions and is similar to our previous work on quadrupolar nuclei (2)H (HDO) and (23)Na(+). When the (13)C isotopomer glycine-2-(13)C was used, the same effect was found in twice, split by (1)J(CH)+2D(CH). Additional signals in (1)H and (13)C NMR due to prochiral-chiral interactions were found when glycine-2-(13)C was dissolved in chiral anisotropic gelatin and κ-carrageenan gels. The NMR spectra were successfully simulated assuming a (2)J(HH) coupling constant of -16.5Hz and two distinct dipolar coupling constants for the -(13)CH(2)- group (D(C,HA), and D(C,HB)).  相似文献   

12.
The satellite-transition MAS (STMAS) experiment offers an alternative approach to established methods such as dynamic angle spinning (DAS), double rotation (DOR), and multiple-quantum MAS (MQMAS) for obtaining high-resolution NMR spectra of half-integer quadrupolar nuclei. Unlike the multiple-quantum experiment, STMAS involves two-dimensional correlation of purely single-quantum coherences; satellite transitions in t(1) (or F(1)) and the central transition in t(2) (or F(2)). To date, STMAS has primarily been demonstrated for nuclei with spin quantum numbers I = 3/2 and, to a lesser extent, I > 5/2. However, many chemically relevant nuclei possess I > 3/2, such as (17)O and (27)Al (both I = 5/2), (59)Co (I = 7/2), and (93)Nb (I = 9/2). Here, we discuss the application of STMAS to nuclei with spin quantum numbers from I = 3/2 to 9/2. First, we consider the practical implementation of the STMAS experiment using (87)Rb (I = 3/2) NMR as an example. We then extend the discussion to include nuclei with higher spin quantum numbers, demonstrating (27)Al, (45)Sc (I = 7/2), (59)Co, and (93)Nb STMAS experiments on both crystalline and amorphous samples. We also consider the possibility of experiments involving satellite transitions other than m(I) = +/- 1/2 <--> +/- 3/2 and, using (93)Nb NMR, demonstrate the correlation of all single-quantum satellite transitions up to and including m(I) = +/- 7/2 <--> +/- 9/2. The absolute chemical shift scaling factors in these experiments are discussed, as are the implications for isotropic resolution.  相似文献   

13.
For the first time, 17O NMR studies were performed on 17O-enriched crystalline pyrophosphates (magnesium-, sodium- and barium-pyrophosphate) by means of triple-quantum magic-angle spinning (3QMAS) and double-rotation (DOR) in the high external field of 17.6 T. Oxygen atoms in bridging positions (P-OB-P) exhibit a significant higher quadrupole coupling constant compared to oxygen atoms in terminal positions (P-OT). With increasing cationic radius a higher value of the chemical shift of the terminal oxygen atoms is observed.  相似文献   

14.
Solid-state (33)S MAS NMR spectra of a variety of inorganic sulfates have been obtained at magnetic field strengths of 4.7, 14.1, 17.6, and 18.8 T. Some of the difficulties associated with obtaining natural abundance (33)S NMR spectra have been overcome by using a high magnetic field strength and magic angle spinning (MAS). Multiple factors were considered when analyzing the spectral linewidths, including magnetic field inhomogeneity, dipolar coupling, chemical shift anisotropy, chemical shift dispersion, and quadrupolar coupling. In most of these sulfate samples, quadrupolar coupling was the dominant line broadening mechanism. Nuclear electric quadrupolar coupling constants (C(q)) as large as 2.05 MHz were calculated using spectral simulation software. Spectral information from these new data are compared with X-ray measurements and GAUSSIAN 98W calculations. A general correlation was observed between the magnitude of the C(q) and the increasing difference between S-O bond distances within the sulfate groups. Solid-state (33)S spin-lattice (T(1)) relaxation times were measured and show a significant reduction in T(1) for the hydrated sulfates. This is most likely the result of the modulation of the time-dependent electric field gradient at the nuclear site by motion of water molecules. This information will be useful in future efforts to use (33)S NMR in the compositional and structural analysis of sulfur containing materials.  相似文献   

15.
Solid-state (33)S MAS NMR spectra of a variety of inorganic sulfates have been obtained at magnetic field strengths of 4.7, 14.1, 17.6, and 18.8 T. Some of the difficulties associated with obtaining natural abundance (33)S NMR spectra have been overcome by using a high magnetic field strength and magic angle spinning (MAS). Multiple factors were considered when analyzing the spectral linewidths, including magnetic field inhomogeneity, dipolar coupling, chemical shift anisotropy, chemical shift dispersion, and quadrupolar coupling. In most of these sulfate samples, quadrupolar coupling was the dominant line broadening mechanism. Nuclear electric quadrupolar coupling constants (C(q)) as large as 2.05 MHz were calculated using spectral simulation software. Spectral information from these new data are compared with X-ray measurements and GAUSSIAN 98W calculations. A general correlation was observed between the magnitude of the C(q) and the increasing difference between S-O bond distances within the sulfate groups. Solid-state (33)S spin-lattice (T(1)) relaxation times were measured and show a significant reduction in T(1) for the hydrated sulfates. This is most likely the result of the modulation of the time-dependent electric field gradient at the nuclear site by motion of water molecules. This information will be useful in future efforts to use (33)S NMR in the compositional and structural analysis of sulfur containing materials.  相似文献   

16.
11B, 27Al and 29Si magic angle spinning NMR results are reported for the boroaluminosilicate mineral grandidierite (Mg, Fe)Al3SiBO9. Three distinct aluminium sites are identified, two AlO6 and one AlO5. Despite overlap of the centrebands from these sites the use of three magnetic fields (9.4, 11.7 and 14.1 T) allows unambiguous values for the isotropic chemical shift (delta iso), quadrupolar coupling constant (Cq) and quadrupolar asymmetry parameter (eta) to be deduced for each site. The NMR spectrum from the AlO5 site is simulated with parameters Cq = 8.7 +/- 0.1 MHz, eta = 0.95 +/- 0.05 and delta iso = 41 +/- 1 ppm which are compared to values from other well-defined AlO5 units.  相似文献   

17.
The orientation data provided by solid-state NMR can provide a great deal of structural information about membrane proteins. The quality of the information provided is, however, somewhat degraded by sign degeneracies in measurements of the dipolar coupling tensor. This is reflected in the dipolar coupling penalty function used in atomic refinement, which is less capable of properly restraining atoms when dipolar sign degeneracies are present. In this report we generate simulated solid-state NMR data using a variety of procedures, including back-calculation from crystal structures of alpha-helical and beta-sheet membrane proteins. We demonstrate that a large fraction of the dipolar sign degeneracies are resolved if anisotropic dipolar coupling measurements are correlated with anisotropic chemical shift measurements, and that all sign degeneracies can be resolved if three data types are correlated. The advantages of correlating data are demonstrated with atomic refinement of two test membrane proteins. When refinement is performed using correlated dipolar couplings and chemical shifts, perturbed structures converge to conformations with a larger fraction of correct dipolar signs than when data are uncorrelated. In addition, the final structures are closer to the original unperturbed structures when correlated data are used in the refinement. Thus, refinement with correlated data leads to improved atomic structures. The software used to correlate dipolar coupling and chemical shift data and to set up energy functions and their derivatives for refinement, CNS-SS02, is available at our web site.  相似文献   

18.
The 27Al NMR spectra of calcium tungstate aluminate sodalite (CAW), Ca8[Al12O24](WO4)2, and the 23Na NMR spectra of sodium aluminosilicate sodalites of general composition Na9[Si6Al6O24]A2 with A = B(OH)4- (SBS), SCN- (SRS) and A2 = SO4(2-) (SSS), MoO4(2-) (SMS) have been measured using magic-angle spinning (MAS) and double-rotation (DOR) techniques. Rotor synchronized pulse excitation is applied in the DOR experiments. Dramatic line narrowing is observed in the DOR spectra of all samples. The 27Al DOR NMR spectra of CAW measured at 9.4 and 11.7 T and spinning rates of 800-1150 Hz of the outer and 5 kHz of the inner rotor show seven sharp central lines accompanied by a manifold of spinning sidebands. These lines correspond to the seven crystallographically inequivalent Al sites of the CAW framework derived from X-ray structure analysis. From the difference of the line positions in the 9.4 and 11.7 T spectra the quadrupole coupling constant, QCC, quadrupole induced shift, sigma qs, and isotropic chemical shift, delta cs, of each Al site have been calculated. QCC values in the range of 5 to 9 MHz are obtained which reflect the strong tetragonal distortion of the AlO4 tetrahedra in CAW. delta cs shows only small changes in the range between 74.4 and 77.2 ppm. A tentative assignment of all lines to the distinct Al sites is derived from the correlation between QCC and a "shear strain parameter" describing quantitatively the distortion of the AlO4 tetrahedra.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
93Nb (I = 9/2) multiple-quantum magic-angle spinning (MQMAS) NMR spectra of a series of inorganic niobates have been measured. 93Nb MQMAS spectroscopy yields spectra with typically an order of magnitude higher resolution than that obtainable with 93Nb MAS spectroscopy and 93Nb dynamic-angle spinning (DAS) spectroscopy. For example, the full-width at half-maximums of the 93Nb resonances of LiNbO3 were 9 (MAS), 5.8 (DAS), and 0.7 kHz (MQMAS). Broadening of the 93Nb MAS and DAS spectra is due to the second-order quadrupolar and homonuclear dipolar interactions, respectively. The quadrupolar products (P(O)) and isotropic chemical shifts (delta(iso)) of the 93Nb resonances of LiNbO3, NaNbO3, PbNb2O6, Pb2Nb2O7, Pb3Nb2O8, Pb3Nb4O15, Pb3Nb4O13, and Pb1.83Nb1.71Mg0.29O6.39 were determined from MQMAS spectra and range from 13.6 to 26.8 MHz and from -951 to -1113 ppm, respectively. Resonances with relatively large quadrupolar coupling constants (> 30 MHz) were not observed using MQMAS spectroscopy, but were detected using nutation spectroscopy. The applicability and limitations of MQMAS spectroscopy in studying inorganic niobates containing multiple 93Nb resonances are addressed and compared with those of MAS, nutation, and DAS spectroscopies.  相似文献   

20.
A rotary resonance echo double resonance (R-REDOR) experiment is described for measuring heteronuclear dipolar coupling under magic-angle spinning. Rotary resonance reintroduces both dipolar coupling and chemical shift anisotropy with an rf field matching the spinning frequency. The resonance effect from chemical shift anisotropy can be refocused with a rotary resonance echo. The R-REDOR experiment thus measures the dephasing of the rotary resonance echo from the heteronuclear dipolar coupling to determine the dipolar coupling constant. The rotary resonance experiment is suitable for measuring dipolar coupling with quadrupolar nuclei because it applies the recoupling rf only to the observed spin-1/2. The rotary resonance scheme has the advantages of a long T2' and susceptible to spinning frequency fluctuation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号