首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Born‐Oppenheimer ab initio QM/MM molecular dynamics simulation with umbrella sampling is a state‐of‐the‐art approach to calculate free energy profiles of chemical reactions in complex systems. To further improve its computational efficiency, a mass‐scaling method with the increased time step in MD simulations has been explored and tested. It is found that by increasing the hydrogen mass to 10 amu, a time step of 3 fs can be employed in ab initio QM/MM MD simulations. In all our three test cases, including two solution reactions and one enzyme reaction, the resulted reaction free energy profiles with 3 fs time step and mass scaling are found to be in excellent agreement with the corresponding simulation results using 1 fs time step and the normal mass. These results indicate that for Born‐Oppenheimer ab initio QM/MM molecular dynamics simulations with umbrella sampling, the mass‐scaling method can significantly reduce its computational cost while has little effect on the calculated free energy profiles. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

2.
The acylation mechanism of a prototypical serine protease trypsin and its complete free energy reaction profile have been determined by Born-Oppenheimer ab initio QM/MM molecular dynamics simulations with umbrella sampling.  相似文献   

3.
To accurately determine the reaction path and its energetics for enzymatic and solution-phase reactions, we present a sequential sampling and optimization approach that greatly enhances the efficiency of the ab initio quantum mechanics/molecular mechanics minimum free-energy path (QM/MM-MFEP) method. In the QM/MM-MFEP method, the thermodynamics of a complex reaction system is described by the potential of mean force (PMF) surface of the quantum mechanical (QM) subsystem with a small number of degrees of freedom, somewhat like describing a reaction process in the gas phase. The main computational cost of the QM/MM-MFEP method comes from the statistical sampling of conformations of the molecular mechanical (MM) subsystem required for the calculation of the QM PMF and its gradient. In our new sequential sampling and optimization approach, we aim to reduce the amount of MM sampling while still retaining the accuracy of the results by first carrying out MM phase-space sampling and then optimizing the QM subsystem in the fixed-size ensemble of MM conformations. The resulting QM optimized structures are then used to obtain more accurate sampling of the MM subsystem. This process of sequential MM sampling and QM optimization is iterated until convergence. The use of a fixed-size, finite MM conformational ensemble enables the precise evaluation of the QM potential of mean force and its gradient within the ensemble, thus circumventing the challenges associated with statistical averaging and significantly speeding up the convergence of the optimization process. To further improve the accuracy of the QM/MM-MFEP method, the reaction path potential method developed by Lu and Yang [Z. Lu and W. Yang, J. Chem. Phys. 121, 89 (2004)] is employed to describe the QM/MM electrostatic interactions in an approximate yet accurate way with a computational cost that is comparable to classical MM simulations. The new method was successfully applied to two example reaction processes, the classical SN2 reaction of Cl-+CH3Cl in solution and the second proton transfer step of the reaction catalyzed by the enzyme 4-oxalocrotonate tautomerase. The activation free energies calculated with this new sequential sampling and optimization approach to the QM/MM-MFEP method agree well with results from other simulation approaches such as the umbrella sampling technique with direct QM/MM dynamics sampling, demonstrating the accuracy of the iterative QM/MM-MFEP method.  相似文献   

4.
The quantum chemistry polarizable force field program (QuanPol) is implemented to perform combined quantum mechanical and molecular mechanical (QM/MM) calculations with induced dipole polarizable force fields and induced surface charge continuum solvation models. The QM methods include Hartree–Fock method, density functional theory method (DFT), generalized valence bond theory method, multiconfiguration self‐consistent field method, Møller–Plesset perturbation theory method, and time‐dependent DFT method. The induced dipoles of the MM atoms and the induced surface charges of the continuum solvation model are self‐consistently and variationally determined together with the QM wavefunction. The MM force field methods can be user specified, or a standard force field such as MMFF94, Chemistry at Harvard Molecular Mechanics (CHARMM), Assisted Model Building with Energy Refinement (AMBER), and Optimized Potentials for Liquid Simulations‐All Atom (OPLS‐AA). Analytic gradients for all of these methods are implemented so geometry optimization and molecular dynamics (MD) simulation can be performed. MD free energy perturbation and umbrella sampling methods are also implemented. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
We report a combined quantum mechanical/molecular mechanical (QM/MM) study on the mechanism of the enzymatic Baeyer-Villiger reaction catalyzed by cyclohexanone monooxygenase (CHMO). In QM/MM geometry optimizations and reaction path calculations, density functional theory (B3LYP/TZVP) is used to describe the QM region consisting of the substrate (cyclohexanone), the isoalloxazine ring of C4a-peroxyflavin, the side chain of Arg-329, and the nicotinamide ring and the adjacent ribose of NADP(+), while the remainder of the enzyme is represented by the CHARMM force field. QM/MM molecular dynamics simulations and free energy calculations at the semiempirical OM3/CHARMM level employ the same QM/MM partitioning. According to the QM/MM calculations, the enzyme-reactant complex contains an anionic deprotonated C4a-peroxyflavin that is stabilized by strong hydrogen bonds with the Arg-329 residue and the NADP(+) cofactor. The CHMO-catalyzed reaction proceeds via a Criegee intermediate having pronounced anionic character. The initial addition reaction has to overcome an energy barrier of about 9 kcal/mol. The formed Criegee intermediate occupies a shallow minimum on the QM/MM potential energy surface and can undergo fragmentation to the lactone product by surmounting a second energy barrier of about 7 kcal/mol. The transition state for the latter migration step is the highest point on the QM/MM energy profile. Gas-phase reoptimizations of the QM region lead to higher barriers and confirm the crucial role of the Arg-329 residue and the NADP(+) cofactor for the catalytic efficiency of CHMO. QM/MM calculations for the CHMO-catalyzed oxidation of 4-methylcyclohexanone reproduce and rationalize the experimentally observed (S)-enantioselectivity for this substrate, which is governed by the conformational preferences of the corresponding Criegee intermediate and the subsequent transition state for the migration step.  相似文献   

6.
7.
We employed QM/MM molecular dynamics (MD) simulations to characterize the rate-limiting step of the glycosylation reaction of pancreatic α-amylase with combined DFT/molecular dynamics methods (PBE/def2-SVP : AMBER). Upon careful choice of four starting active site conformations based on thorough reactivity criteria, Gibbs energy profiles were calculated with umbrella sampling simulations within a statistical convergence of 1–2 kcal ⋅ mol−1. Nevertheless, Gibbs activation barriers and reaction energies still varied from 11.0 to 16.8 kcal ⋅ mol−1 and −6.3 to +3.8 kcal ⋅ mol−1 depending on the starting conformations, showing that despite significant state-of-the-art QM/MM MD sampling (0.5 ns/profile) the result still depends on the starting structure. The results supported the one step dissociative mechanism of Asp197 glycosylation preceded by an acid-base reaction by the Glu233, which are qualitatively similar to those from multi-PES QM/MM studies, and thus support the use of the latter to determine enzyme reaction mechanisms.  相似文献   

8.
9.
The inter- and intramolecular interactions that determine the experimentally observed binding mode of the ligand (2Z)-2-(benzoylamino)-3-[4-(2-bromophenoxy)phenyl]-2-propenoate in complex with hepatitis C virus NS5B polymerase have been studied using QM/MM calculations. DFT-based QM/MM optimizations were performed on a number of ligand conformers in the protein-ligand complex. Using these initial poses, our aim is 2-fold. First, we identify the minimum energy pose. Second, we dissect the energetic contributions to this pose using QM/MM methods. The study reveals the critical importance of internal energy for the proper energy ranking of the docked poses. Using this protocol, we successfully identified three poses that have low RMSD with respect to the crystallographic structure from among the top 20 initially docked poses. We show that the most important energetic component contributing to binding for this particular protein-ligand system is the conformational (i.e., QM internal) energy.  相似文献   

10.
The ability to predict and characterize free energy differences associated with conformational equilibria or the binding of biomolecules is vital to understanding the molecular basis of many important biological functions. As biological studies focus on larger molecular complexes and properties of the genome, proteome, and interactome, the development and characterization of efficient methods for calculating free energy becomes increasingly essential. The aim of this study is to examine the robustness of the end-point free energy method termed the molecular mechanics Poisson-Boltzmann solvent accessible surface area (MM/PBSA) method. Specifically, applications of MM/PBSA to the conformational equilibria of nucleic acid (NA) systems are explored. This is achieved by comparing A to B form DNA conformational free energy differences calculated using MM/PBSA with corresponding free energy differences determined with a more rigorous and time-consuming umbrella sampling algorithm. In addition, the robustness of NA MM/PBSA calculations is also evaluated in terms of the sensitivity towards the choice of force field and the choice of solvent model used during conformational sampling. MM/PBSA calculations of the free energy difference between A-form and B-form DNA are shown to be in very close agreement with the PMF result determined using an umbrella sampling approach. Further, it is found that the MM/PBSA conformational free energy differences were also in agreement using either the CHARMM or AMBER force field. The influence of ionic strength on conformational stability was particularly insensitive to the choice of force field. Finally, it is also shown that the use of a generalized Born implicit solvent during conformational sampling results in free energy estimates that deviate slightly from those obtained using explicitly solvated MD simulations in these NA systems.  相似文献   

11.
12.
 Hybrid quantum mechanical (QM) and molecular mechanical (MM) potentials are becoming increasingly important for studying condensed-phase systems but one of the outstanding problems in the field has been how to treat covalent bonds between atoms of the QM and MM regions. Recently, we presented a generalized hybrid orbital (GHO) method that was designed to tackle this problem for hybrid potentials using semiempirical QM methods [Gao et al. (1998) J Phys Chem A 102: 4714–4721]. We tested the method on some small molecules and showed that it performed well when compared to the purely QM or MM potentials. In this article, we describe the formalism for the determination of the GHO energy derivatives and then present the results of more tests aimed at validating the model. These tests, involving the calculation of the proton affinities of some model compounds and a molecular dynamics simulation of a protein, indicate that the GHO method will prove useful for the application of hybrid potentials to solution-phase macromolecular systems. Received: 4 October 1999 / Accepted: 18 December 1999 / Published online: 5 June 2000  相似文献   

13.
The generalized hybrid orbital (GHO) method is implemented at the second-order approximate coupled cluster singles and doubles (CC2) level for quantum mechanical (QM)/molecular mechanical (MM) electronic excited state calculations. The linear response function of CC2 in the GHO scheme is derived and implemented. The new implementation is applied to the first singlet excited states of three aromatic amino acids, phenylalanine, tyrosine, and tryptophan, and also bacteriorhodopsin for assessment. The results obtained for aromatic amino acids agreed well with the full QM CC2 calculations, while the calculated excitation energies of bacteriorhodopsin and its chromophore, all-trans retinal, reproduced the environmental shift of the experimental data. For the bacteriorhodopsin case, the environmental shift of GHO also showed good agreements with the experimental data. The contribution of the quantum effect of certain moieties in the excited states is elucidated by changing the partitioning of QM and MM regions.  相似文献   

14.
The combination of quantum mechanics (QM) with molecular mechanics (MM) offers a route to improved accuracy in the study of biological systems, and there is now significant research effort being spent to develop QM/MM methods that can be applied to the calculation of relative free energies. Currently, the computational expense of the QM part of the calculation means that there is no single method that achieves both efficiency and rigor; either the QM/MM free energy method is rigorous and computationally expensive, or the method introduces efficiency-led assumptions that can lead to errors in the result, or a lack of generality of application. In this paper we demonstrate a combined approach to form a single, efficient, and, in principle, exact QM/MM free energy method. We demonstrate the application of this method by using it to explore the difference in hydration of water and methane. We demonstrate that it is possible to calculate highly converged QM/MM relative free energies at the MP2/aug-cc-pVDZ/OPLS level within just two days of computation, using commodity processors, and show how the method allows consistent, high-quality sampling of complex solvent configurational change, both when perturbing hydrophilic water into hydrophobic methane, and also when moving from a MM Hamiltonian to a QM/MM Hamiltonian. The results demonstrate the validity and power of this methodology, and raise important questions regarding the compatibility of MM and QM/MM forcefields, and offer a potential route to improved compatibility.  相似文献   

15.
The authors present a method based on a linear response theory that allows one to optimize the geometries of quantum mechanical/molecular mechanical (QM/MM) systems on the free energy surfaces. Two different forms of linear response free energy functionals are introduced, and electronic wave functions of the QM region, as well as the responses of electrostatic and Lennard-Jones potentials between QM and MM regions, are self-consistently determined. The covariant matrix relating the QM charge distribution to the MM response is evaluated by molecular dynamics (MD) simulation of the MM system. The free energy gradients with respect to the QM atomic coordinates are also calculated using the MD trajectory results. They apply the present method to calculate the free energy profiles of Menshutkin-type reaction of NH3 with CH3Cl and Claisen rearrangement of allyl vinyl ether in aqueous solution. For the Menshutkin reaction, the free energy profile calculated with the modified linear response free energy functional is in good agreement with that by the free energy perturbation calculations. They examine the nonequilibrium solvation effect on the transmission coefficient and the kinetic isotope effect for the Claisen rearrangement.  相似文献   

16.
One of the central aspects of biomolecular recognition is the hydrophobic effect, which is experimentally evaluated by measuring the distribution coefficients of compounds between polar and apolar phases. We use our predictions of the distribution coefficients between water and cyclohexane from the SAMPL5 challenge to estimate the hydrophobicity of different explicit solvent simulation techniques. Based on molecular dynamics trajectories with the CHARMM General Force Field, we compare pure molecular mechanics (MM) with quantum-mechanical (QM) calculations based on QM/MM schemes that treat the solvent at the MM level. We perform QM/MM with both density functional theory (BLYP) and semi-empirical methods (OM1, OM2, OM3, PM3). The calculations also serve to test the sensitivity of partition coefficients to solute polarizability as well as the interplay of the quantum-mechanical region with the fixed-charge molecular mechanics environment. Our results indicate that QM/MM with both BLYP and OM2 outperforms pure MM. However, this observation is limited to a subset of cases where convergence of the free energy can be achieved.  相似文献   

17.
QM/MM methods have been developed as a computationally feasible solution to QM simulation of chemical processes, such as enzyme-catalyzed reactions, within a more approximate MM representation of the condensed-phase environment. However, there has been no independent method for checking the quality of this representation, especially for highly nonisotropic protein environments such as those surrounding enzyme active sites. Hence, the validity of QM/MM methods is largely untested. Here we use the possibility of performing all-QM calculations at the semiempirical PM3 level with a linear-scaling method (MOZYME) to assess the performance of a QM/MM method (PM3/AMBER94 force field). Using two model pathways for the hydride-ion transfer reaction of the enzyme dihydrofolate reductase studied previously (Titmuss et al., Chem Phys Lett 2000, 320, 169-176), we have analyzed the reaction energy contributions (QM, QM/MM, and MM) from the QM/MM results and compared them with analogous-region components calculated via an energy partitioning scheme implemented into MOZYME. This analysis further divided the MOZYME components into Coulomb, resonance and exchange energy terms. For the model in which the MM coordinates are kept fixed during the reaction, we find that the MOZYME and QM/MM total energy profiles agree very well, but that there are significant differences in the energy components. Most significantly there is a large change (approximately 16 kcal/mol) in the MOZYME MM component due to polarization of the MM region surrounding the active site, and which arises mostly from MM atoms close to (<10 A) the active-site QM region, which is not modelled explicitly by our QM/MM method. However, for the model where the MM coordinates are allowed to vary during the reaction, we find large differences in the MOZYME and QM/MM total energy profiles, with a discrepancy of 52 kcal/mol between the relative reaction (product-reactant) energies. This is largely due to a difference in the MM energies of 58 kcal/mol, of which we can attribute approximately 40 kcal/mol to geometry effects in the MM region and the remainder, as before, to MM region polarization. Contrary to the fixed-geometry model, there is no correlation of the MM energy changes with distance from the QM region, nor are they contributed by only a few residues. Overall, the results suggest that merely extending the size of the QM region in the QM/MM calculation is not a universal solution to the MOZYME- and QM/MM-method differences. They also suggest that attaching physical significance to MOZYME Coulomb, resonance and exchange components is problematic. Although we conclude that it would be possible to reparameterize the QM/MM force field to reproduce MOZYME energies, a better way to account for both the effects of the protein environment and known deficiencies in semiempirical methods would be to parameterize the force field based on data from DFT or ab initio QM linear-scaling calculations. Such a force field could be used efficiently in MD simulations to calculate free energies.  相似文献   

18.
Biologically relevant interactions of piano‐stool ruthenium(II) complexes with ds‐DNA are studied in this article by hybrid quantum mechanics—molecular mechanics (QM/MM) computational technique. The whole reaction mechanism is divided into three phases: (i) hydration of the [RuII6‐benzene)(en)Cl]+ complex, (ii) monoadduct formation between the resulting aqua‐Ru(II) complex and N7 position of one of the guanines in the ds‐DNA oligomer, and (iii) formation of the intrastrand Ru(II) bridge (cross‐link) between two adjacent guanines. Free energy profiles of all the reactions are explored by QM/MM MD umbrella sampling approach where the Ru(II) complex and two guanines represent a quantum core, which is described by density functional theory methods. The combined QM/MM scheme is realized by our own software, which was developed to couple several quantum chemical programs (in this study Gaussian 09) and Amber 11 package. Calculated free energy barriers of the both ruthenium hydration and Ru(II)‐N7(G) DNA binding process are in good agreement with experimentally measured rate constants. Then, this method was used to study the possibility of cross‐link formation. One feasible pathway leading to Ru(II) guanine‐guanine cross‐link with synchronous releasing of the benzene ligand is predicted. The cross‐linking is an exergonic process with the energy barrier lower than for the monoadduct reaction of Ru(II) complex with ds‐DNA. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
The significance of conical intersections in photophysics, photochemistry, and photodissociation of polyatomic molecules in gas phase has been demonstrated by numerous experimental and theoretical studies. Optimization of conical intersections of small- and medium-size molecules in gas phase has currently become a routine optimization process, as it has been implemented in many electronic structure packages. However, optimization of conical intersections of small- and medium-size molecules in solution or macromolecules remains inefficient, even poorly defined, due to large number of degrees of freedom and costly evaluations of gradient difference and nonadiabatic coupling vectors. In this work, based on the sequential quantum mechanics and molecular mechanics (QM/MM) and QM/MM-minimum free energy path methods, we have designed two conical intersection optimization methods for small- and medium-size molecules in solution or macromolecules. The first one is sequential QM conical intersection optimization and MM minimization for potential energy surfaces; the second one is sequential QM conical intersection optimization and MM sampling for potential of mean force surfaces, i.e., free energy surfaces. In such methods, the region where electronic structures change remarkably is placed into the QM subsystem, while the rest of the system is placed into the MM subsystem; thus, dimensionalities of gradient difference and nonadiabatic coupling vectors are decreased due to the relatively small QM subsystem. Furthermore, in comparison with the concurrent optimization scheme, sequential QM conical intersection optimization and MM minimization or sampling reduce the number of evaluations of gradient difference and nonadiabatic coupling vectors because these vectors need to be calculated only when the QM subsystem moves, independent of the MM minimization or sampling. Taken together, costly evaluations of gradient difference and nonadiabatic coupling vectors in solution or macromolecules can be reduced significantly. Test optimizations of conical intersections of cyclopropanone and acetaldehyde in aqueous solution have been carried out successfully.  相似文献   

20.
Protein splicing is a post-translational process in which a biologically inactive protein is activated by the release of a segment denoted as an intein. The process involves four steps. In the third, the scission of the intein takes place after the cyclization of the last amino acid of the segment, an asparagine. Little is known about the chemical reaction necessary for this cyclization. Experiments demonstrate that two histidines (the penultimate amino acid of the intein, and a histidine located 10 amino acids upstream) are relevant in the cyclization of the asparagine. We have investigated the mechanism and determinants of reaction in the GyrA intein focusing on the requirements for asparagine activation for its cyclization. First, the influence that the protonation states of these two histidines have on the orientation of the asparagine side chain is investigated by means of molecular dynamics simulation. Molecular dynamics simulations using the CHARMM27 force field were carried out on the three possible protonation states for each of these two histidines. The results indicate that the only protonation state in which the conformation of the system is suitable for cyclization is when the penultimate histidine is fully protonated (positively charged), and the upstream histidine is in the His(ε) neutral tautomeric form. The free energy profile for the reaction in which the asparagine is activated by a proton transfer to the upstream histidine is presented, computed by hybrid quantum mechanics/molecular mechanics (QM/MM) umbrella sampling molecular dynamics at the SCCDFTB/CHARMM27 level of theory. The calculated free energy barrier for the reaction is 19.0 kcal mol(-1). B3LYP/6-31+G(d) QM/MM single-point calculations give a qualitatively a similar energy profile, although with somewhat higher energy barriers, in good agreement with the value derived from experiment of 25 kcal mol(-1) at 60 °C. QM/MM molecular dynamics simulations of the reactant, activated reactant and intermediate states highlight the importance of the Arg181-Val182-Asp183 segment in catalysing the reaction. Overall, the results indicate that nucleophilic activation of the asparagine for its cyclization by the upstream histidine acting as the base is a plausible mechanism for the C-terminal cleavage in protein splicing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号