首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 421 毫秒
1.
The harmonic content of the nonlinear dynamic behaviour of 1% polyacrylamide in 50% glycerol/water was studied using a standard Model R 18 Weissenberg Rheogoniometer. The Fourier analysis of the Oscillation Input and Torsion Head motions was performed using a Digital Transfer Function Analyser.In the absence of fluid inertia effects and when the amplitude of the (fundamental) Oscillation Input motion I is much greater than the amplitudes of the Fourier components of the Torsion Head motion Tn empirical nonlinear dynamic rheological propertiesG n (, 0),G n (, 0) and/or n (, 0), n (, 0) may be evaluated without a-priori-knowledge of a rheological constitutive equation. A detailed derivation of the basic equations involved is presented.Cone and plate data for the third harmonic storage modulus (dynamic rigidity)G 3 (, 0), loss modulusG 3 (, 0) and loss angle 3 (, 0) are presented for the frequency range 3.14 × 10–2 1.25 × 102 rad/s at two strain amplitudes, CP 0 = 2.27 and 4.03. Composite cone and plate and parallel plates data for both the third and fifth harmonic dynamic viscosities 3 (, 0), S (, 0) and dynamic rigiditiesG 3 (, 0),G 5 (, 0) are presented for strain amplitudes in the ranges 1.10 CP 0 4.03 and 1.80 PP 0 36 for a single frequency, = 3.14 × 10–1 rad/s. Good agreement was obtained between the results from both geometries and the absence of significant fluid inertia effects was confirmed by the superposition of the data for different gap widths.  相似文献   

2.
If the viscosity can be expressed in the form = (T)f(), the walls are at a constant temperatureT 0, and the extra stress, velocity and temperature fields are fully developed, then the wall shear rate can be calculated by applying the Weissenberg-Rabinowitsch operator toF c Q instead of to the flow rateQ, whereF c is a correction factor which differs from 1 when the temperature field is non-uniform; the isothermal equation relating the wall shear stress and pressure gradient is still valid. For the case in whcih = 0|| n /(1 +(TT 0)), wheren, 0, and are independent of shear stress and temperatureT, an exact analytical expression forF c in terms of the Nahme-Griffith numberNa andn is obtained. Use of this expression gives agreement with data obtained for degassed decalin ( = 2.5 mPa s) from a new miniature slit-die viscometer at shear rates up to 5 × 106s–1; here, the correction is only 7%,Na is 1.3, andGz, the Graetz number at the die exit, is 119. For a Cannon standard liquidS6 ( = 9 mPa s), agreement extends up to 5 × 105s–1; at 2×106s–1 (whereNa = 7.2 andGz = 231), the corrections are 11% (measured) and 36% (calculated).Notation x, y Cartesian coordinates - v x ,v velocity inx-direction, dimensionless velocity - p xx ,p yy normal stress onx- andy-planes - N 1 first normal stress difference - shear stress ony-planes acting inx-direction - w value of shear stress at the wall - shear rate, shear rate at the wall - Q, Q flow rate (Eqs. (2.13), (2.15)) - T, T 0 temperature, temperature at the wall - ø, dimensionless temperature (Eqs. (2.24), (2.25)) - h, w half of die height, width of die - R diameter of a tube - , 0 viscosity, viscosity atT = T 0 - viscosity-temperature coefficient - k thermal conductivity - c p specific heat at constant pressure - n, m dimensionless parameters characterizing shear stress dependence of viscosity - Na Nahme Griffith number (Eq. (2.21)) - Gz Graetz number (Eq. (5.1)) - F c viscous heating correction factor (Eq. (2.18)) - ( ) a function characterizing temperature dependence of viscosity (Eq. (2.8)) - J k ( ) Bessel function of the first kind This paper is dedicated to Professor Hanswalter Giesekus on the occasion of his retirement as Editor of Rheologica Acta.  相似文献   

3.
We consider the parametrized family of equations tt ,u- xx u-au+u 2 2 u=O,x(0,L), with Dirichlet boundary conditions. This equation has finite-dimensional invariant manifolds of solutions. Studying the reduced equation to a four-dimensional manifold, we prove the existence of transversal homoclinic orbits to periodic solutions and of invariant sets with chaotic dynamics, provided that =2, 3, 4,.... For =1 we prove the existence of infinitely many first integrals pairwise in involution.  相似文献   

4.
We study and obtain formulas for the asymptotic behavior as ¦x¦ of C 2 solutions of the semilinear equation u=f(x, u), x (*) where is the complement of some ball in n and f is continuous and nonlinear in u. If, for large x, f is nearly radially symmetric in x, we give conditions under which each positive solution of (*) is asymptotic, as ¦x¦, to some radially symmetric function. Our results can also be useful when f is only bounded above or below by a function which is radially symmetric in x or when the solution oscillates in sign. Examples when f has power-like growth or exponential growth in the variables x and u usefully illustrate our results.  相似文献   

5.
The effects of MHD free convection and mass transfer are taken into account on the flow past oscillating infinite coaxial vertical circular cylinder. The analytical expressions for velocity, temperature and concentration of the fluid are obtained by using perturbation technique.
Einwirkungen von freier MHD-Konvektion und Stoffübertragung auf eine Strömung nach einem schwingenden unendlichen koaxialen vertikalen Zylinder
Zusammenfassung Die Einwirkungen der freien MHD-Konvektion und Stoffübertragung auf eine Strömung nach einem schwingenden, unendlichen, koaxialen, vertikalen Zylinder wurden untersucht. Die analytischen Ausdrücke der Geschwindigkeit, Temperatur und Fluidkonzentration sind durch die Perturbationstechnik erhalten worden.

Nomenclature C p Specific heat at constant temperature - C the species concentration near the circular cylinder - C w the species concentration of the circular cylinder - C the species concentration of the fluid at infinite - * dimensionless species concentration - D chemical molecular diffusivity - g acceleration due to gravity - Gr Grashof number - Gm modified Grashof number - K thermal conductivity - Pr Prandtl number - r a ,r b radius of inner and outer cylinder - a, b dimensionless inner and outer radius - r,r coordinate and dimensionless coordinate normal to the circular cylinder - Sc Schmidt number - t time - t dimensionless time - T temperature of the fluid near the circular cylinder - T w temperature of the circular cylinder - T temperature of the fluid at infinite - u velocity of the fluid - u dimensionless velocity of the fluid - U 0 reference velocity - z,z coordinate and dimensionless coordinate along the circular cylinder - coefficient of volume expansion - * coefficient of thermal expansion with concentration - dimensionless temperature - H 0 magnetic field intensity - coefficient of viscosity - e permeability (magnetic) - kinematic viscosity - electric conductivity - density - M Hartmann number - dimensionless skin-friction - frequency - dimensionless frequency  相似文献   

6.
When analyzing stochastic steady flow, the hydraulic conductivity naturally appears logarithmically. Often the log conductivity is represented as the sum of an average plus a stochastic fluctuation. To make the problem tractable, the log conductivity fluctuation, f, about the mean log conductivity, lnK G, is assumed to have finite variance, f 2. Historically, perturbation schemes have involved the assumption that f 2<1. Here it is shown that f may not be the most judicious choice of perturbation parameters for steady flow. Instead, we posit that the variance of the gradient of the conductivity fluctuation, f 2, is more appropriate hoice. By solving the problem withthis parameter and studying the solution, this conjecture can be refined and an even more appropriate perturbation parameter, , defined. Since the processes f and f can often be considered independent, further assumptions on f are necessary. In particular, when the two point correlation function for the conductivity is assumed to be exponential or Gaussian, it is possible to estimate the magnitude of f in terms of f and various length scales. The ratio of the integral scale in the main direction of flow ( x ) to the total domain length (L*), x 2=x/L*, plays an important role in the convergence of the perturbation scheme. For x smaller than a critical value c, x < c, the scheme's perturbation parameter is =f/x for one- dimensional flow, and =f/x 2 for two-dimensional flow with mean flow in the x direction. For x > c, the parameter =f/x 3 may be thought as the perturbation parameter for two-dimensional flow. The shape of the log conductivity fluctuation two point correlation function, and boundary conditions influence the convergence of the perturbation scheme.  相似文献   

7.
Summary Thermal free convection from a sphere has been studied by melting solid benzene spheres in excess liquid benzene (Pr=8,3; 108<Gr<109). Overall heat transfer as well as local heat transfer were investigated. For the effect of cold liquid produced by the melting a correction has been applied. Results are compared with those obtained by other workers who used alternative experimental methods.Nomenclature coefficient of heat transfer - d characteristic length, here diameter of sphere - thermal conductivity - g acceleration of free fall - cubic expansion coefficient - T temperature difference between wall and fluid at infinity - kinematic viscosity - density - c specific heat capacity - a thermal diffusivity (=/c) - D diffusion coefficient - Nu dimensionless Nusselt number (=d/) - Nu* the analogous number for mass transfer (=kd/D) - mean value of Nusselt number - Gr dimensionless Grashof number (=gd 3T/ 2) - Gr* the analogous number for mass transfer (=gd 3x/ 2) - Pr dimensionless Prandtl number (=/a) - Sc dimensionless Schmidt number (=/D)  相似文献   

8.
Diffusion in anisotropic porous media   总被引:2,自引:0,他引:2  
An experimental system was constructed in order to measure the two distinct components of the effective diffusivity tensor in transversely isotropic, unconsolidated porous media. Measurements were made for porous media consisting of glass spheres, mica particles, and disks made from mylar sheets. Both the particle geometry and the void fraction of the porous media were determined experimentally, and theoretical calculations for the two components of the effective diffusivity tensor were carried out. The comparison between theory and experiment clearly indicates that the void fraction and particle geometry are insufficient to characterize the process of diffusion in anisotropic porous media. Roman Letters A interfacial area between - and -phases for the macroscopic system, m2 - A e area of entrances and exits of the -phase for the macroscopic system, m2 - A interfacial area contained within the averaging volume, m2 - a characteristic length of a particle, m - b average thickness of a particle, m - c A concentration of species A, moles/m3 - c o reference concentration of species A, moles/m3 - c A intrinsic phase average concentration of species A, moles/m3 - c a c Ac A, spatial deviation concentration of species A, moles/m3 - C c A/c 0, dimensionless concentration of species A - binary molecular diffusion coefficient, m2/s - D eff effective diffusivity tensor, m2/s - D xx component of the effective diffusivity tensor associated with diffusion parallel to the bedding plane, m2/s - D yy component of the effective diffusivity tensor associated with diffusion perpendicular to the bedding plane, m2/s - D eff effective diffusivity for isotropic systems, m2/s - f vector field that maps c A on to c a , m - h depth of the mixing chamber, m  相似文献   

9.
Ohne ZusammenfassungI thank Mr.Scott Blair for his answer reserving the term dilatancy for cases of real dilatation. Now it's only to wish that this terminology is used according to his Report on the principles of rheological nomenclature (Amsterdam 1949).  相似文献   

10.
Expressions are obtained for the pressure distribution in an externally pressurised thrust bearing for the condition when one bearing surface is rotated. The influence of centripetal acceleration and the combined effect of rotational and radial inertia terms are included in the analysis. Rotation of the bearing causes the lubricant to have a velocity component in an axial direction towards the rotating surface as it spirals radially outwards between the bearing surfaces. This results in an increase in the pumping losses and a decrease in the load capacity of the bearing. A further loss in the performance of the bearing is found when the radial inertia term, in addition to the rotational inertia term is included in the analysis.Nomenclature r, z, cylindrical co-ordinates - V r, V , V z velocity components in the r, and z directions respectively - U, X, W representative velocities - coefficient of viscosity - p static pressure at radius r - p mean static pressure at radius r - Q volume flow per unit time - 2h lubricant film thickness - density of the lubricant - r 2 outside radius of bearing = D/2 - angular velocity of bearing - R dimensionless radius = r/h - P dimensionless pressure = h 3 p/Q - Re channel Reynolds number = Q/h  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号