首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We show that for nn? 4 the L-norm of weak solutions of the Navier-Stokes equations on ?n with generalized energy inequality decays like $\parallel u(t, \cdot )\parallel _\infty = O(t^{ - ({{n + 1)} \mathord{\left/ {\vphantom {{n + 1)} 2}} \right. \kern-0em} 2}} ),if(1 + | \cdot |)|u(0, \cdot )| \in L_1 $ and $$\int_{\mathbb{R}^n } {u(0,x)} dx = 0$$ . The same holds for strong solutions in all dimensions, if additionally u(0, ·) ε Lp p >n.  相似文献   

2.
Theorem.Let 1≦p≦∞,p ≠ 2, and let V be an isometry of Cp onto itself. Then there exist two unitary operators u and w on l2 so that V acts on Cp in one of the following forms: \((i) Vx = u \cdot x \cdot w; (ii) Vx = u \cdot x^T \cdot w\) (where xT is the transpose of x).  相似文献   

3.
Let ${\mathcal{D}}_{n,k} $ be the family of linear subspaces of ?n given by all equations of the form $\varepsilon _1 x_{i_1 } = \varepsilon _2 x_{i_2 } = \cdot \cdot \cdot \varepsilon _k x_{i_k } ,$ for 1 ≤ < ? ? ? < i ki and $\left( {\varepsilon _1 ,...,\varepsilon _k } \right)\varepsilon \left\{ { + 1, - 1} \right\}^k $ Also let ${\mathcal{B}}_{n,k,h} $ be ${\mathcal{D}}_{n,k} $ enlarged by the subspaces $x_{j_1 } = x_{j_2 } = \cdot \cdot \cdot x_{j_h } = 0,$ for 1 ≤. The special cases ${\mathcal{B}}_{n,2,1} $ and ${\mathcal{D}}_{n,2} $ are well known as the reflection hyperplane arrangements corresponding to the Coxeter groups of type B nand D n respectively. In this paper we study combinatorial and topological properties of the intersection lattices of these subspace arrangements. Expressions for their Möbius functions and characteristic polynomials are derived. Lexicographic shellability is established in the case of ${\mathcal{B}}_{n,k,h,} 1 \leqslant h < k$ , which allows computation of the homology of its intersection lattice and the cohomology groups of the manifold $\begin{gathered} {\mathcal{D}}_{n,2} \\ M_{n,k,h,} = {\mathbb{R}}^n \backslash \bigcup {{\mathcal{B}}_{n,k,h,} } \\ \end{gathered} $ . For instance, it is shown that $H^d \left( {M_{n,k,k - 1} } \right)$ is torsion-free and is nonzero if and only if d = t(k ? 2) for some $t,0 \leqslant t \leqslant \left[ {{n \mathord{\left/ {\vphantom {n k}} \right. \kern-0em} k}} \right]$ . Torsion-free cohomology follows also for the complement in ?nof the complexification ${\mathcal{B}}_{n,k,h}^C ,1 \leqslant h < k$ .  相似文献   

4.
Let p, n ∈ ? with 2pn + 2, and let I a be a polyharmonic spline of order p on the grid ? × a? n which satisfies the interpolating conditions $I_{a}\left( j,am\right) =d_{j}\left( am\right) $ for j ∈ ?, m ∈ ? n where the functions d j : ? n → ? and the parameter a > 0 are given. Let $B_{s}\left( \mathbb{R}^{n}\right) $ be the set of all integrable functions f : ? n → ? such that the integral $$ \left\| f\right\| _{s}:=\int_{\mathbb{R}^{n}}\left| \widehat{f}\left( \xi\right) \right| \left( 1+\left| \xi\right| ^{s}\right) d\xi $$ is finite. The main result states that for given $\mathbb{\sigma}\geq0$ there exists a constant c>0 such that whenever $d_{j}\in B_{2p}\left( \mathbb{R}^{n}\right) \cap C\left( \mathbb{R}^{n}\right) ,$ j ∈ ?, satisfy $\left\| d_{j}\right\| _{2p}\leq D\cdot\left( 1+\left| j\right| ^{\mathbb{\sigma}}\right) $ for all j ∈ ? there exists a polyspline S : ? n+1 → ? of order p on strips such that $$ \left| S\left( t,y\right) -I_{a}\left( t,y\right) \right| \leq a^{2p-1}c\cdot D\cdot\left( 1+\left| t\right| ^{\mathbb{\sigma}}\right) $$ for all y ∈ ? n , t ∈ ? and all 0 < a ≤ 1.  相似文献   

5.
Рассматривается сис тема ортогональных м ногочленов {P n (z)} 0 , удовлетворяющ их условиям $$\frac{1}{{2\pi }}\int\limits_0^{2\pi } {P_m (z)\overline {P_n (z)} d\sigma (\theta ) = \left\{ {\begin{array}{*{20}c} {0,m \ne n,P_n (z) = z^n + ...,z = \exp (i\theta ),} \\ {h_n > 0,m = n(n = 0,1,...),} \\ \end{array} } \right.} $$ где σ (θ) — ограниченная неу бывающая на отрезке [0,2π] функция с бесчисленным множе ством точек роста. Вводится последовательность параметров {аn 0 , независимых дру г от друга и подчиненных единств енному ограничению { ¦аn¦<1} 0 ; все многочлены {Р n (z)} 0/∞ можно найти по формуле $$P_0 = 1,P_{k + 1(z)} = zP_k (z) - a_k P_k^ * (z),P_k^ * (z) = z^k \bar P_k \left( {\frac{1}{z}} \right)(k = 0,1,...)$$ . Многие свойства и оце нки для {P n (z)} 0 и (θ) можн о найти в зависимости от этих параметров; например, условие \(\mathop \Sigma \limits_{n = 0}^\infty \left| {a_n } \right|^2< \infty \) , бо лее общее, чем условие Г. Cerë, необходимо и достато чно для справедливости а симптотической форм улы в области ¦z¦>1. Пользуясь этим ме тодом, можно найти также реш ение задачи В. А. Стекло ва.  相似文献   

6.
Let p > 3 be a prime, and let q p (2) = (2 p?1 ? 1)/p be the Fermat quotient of p to base 2. In this note we prove that $$\sum\limits_{k = 1}^{p - 1} {\frac{1}{{k \cdot {2^k}}}} \equiv {q_p}(2) - \frac{{p{q_p}{{(2)}^2}}}{2} + \frac{{{p^2}{q_p}{{(2)}^3}}}{3} - \frac{7}{{48}}{p^2}{B_{p - 3}}(\bmod {p^3})$$ , which is a generalization of a congruence due to Z.H. Sun. Our proof is based on certain combinatorial identities and congruences for some alternating harmonic sums. Combining the above congruence with two congruences by Z.H. Sun, we show that $${q_p}{(2)^3} \equiv - 3\sum\limits_{k = 1}^{p - 1} {\frac{{{2^k}}}{{{k^3}}}} + \frac{7}{{16}}\sum\limits_{k = 1}^{(p - 1)/2} {\frac{1}{{{k^3}}}} (\bmod p)$$ , which is just a result established by K. Dilcher and L. Skula. As another application, we obtain a congruence for the sum $\sum\limits_{k = 1}^{p - 1} {{1 \mathord{\left/ {\vphantom {1 {\left( {k^2 \cdot 2^k } \right)}}} \right. \kern-0em} {\left( {k^2 \cdot 2^k } \right)}}}$ modulo p 2 that also generalizes a related Sun’s congruence modulo p.  相似文献   

7.
Let z=∞ be an irregular singular point of the differential equation wn+pn?1(z)w(n?1)+...+p0(z)w=0 with rational coefficients. The functions of the canonical set of solutions relative to z=∞ are of the form $$w(z) = z^\rho \cdot \sum { d_m (z) (\log z)^m , } \rho \varepsilon \mathbb{C}$$ with univalent functions dm(z) in a neighbourhood of z=∞. Let λ(w)=max {λ(dm)} denote the maximal order of growth of an irregular solution relative to z=∞, then it is shown that there exists a branch of w in the plane cut along a half ray, which attains the maximal order λ(w). An important tool for the proof is the index of the branches of w.  相似文献   

8.
For series of random variables $\sum\limits_{k = 1}^\infty {a_k x_k }$ ,a K R 1, {X K } K=1 being an Ising system, i.e., for each n ≥ 2 the joint distribution of {X K } K=1 n has the form $$P_n (t_1 ,...,t_n ) = ch^{ - (n - 1)} J \cdot exp(J\sum\limits_{k - 1}^{n - 1} {t_k t_{k + 1} )\prod\limits_{k = 1}^n {\frac{1}{2}\delta (t_{k^{ - 1} }^2 ),J > 0} }$$ one obtains a criterion for almost everywhere convergence: $\sum\limits_{k = 1}^\infty {a_k^2< \infty }$ . The relation between the asymptotic behavior of large deviations of the sum and the rate of decrease of the sequence {ak} of the coefficients is investigated.  相似文献   

9.
Calling a function f: R + p →R with $$\sum\limits_{i = 1}^n { \sum\limits_{j = 1}^n {\alpha _i \alpha _j } f(t_i + t_j )} \geqslant 0 for all (\alpha _1 ,...,\alpha _n ) \varepsilon R^n ,$$ , (t1,...,tn∈(R + p )n, n∈? positiv semidefinit, the Laplace-transformations of finite nonnegative measures on R + p are charac terised as the continuous bounded positiv semidefinit functions. Let H be a real Hilbertspace. A σ-additive mapping \(M: \mathfrak{B}_ + ^p \to H\) is called an orthogonal measure iff 〈M(A), M(B)?=0 for A∩B=ø. Exactly those mappings Y: R + p →H are Laplacetransformations of H-valued orthogonal measures, which are continuous and bounded and for which ?Y(s), Y(t)? is only a function of s + t. Using this result one obtains a representation theorem for continuous semi-grouphomomorphisms defined on R + p with values in the “unit intervall” of the selfadjoint operators on H.  相似文献   

10.
We investigate the question of the regularized sums of part of the eigenvalues zn (lying along a direction) of a Sturm-Liouville operator. The first regularized sum is $$\sum\nolimits_{n = 1}^\infty {(z_n - n - \frac{{c_1 }}{n} + \frac{2}{\pi } \cdot z_n arctg \frac{1}{{z_n }} - \frac{2}{\pi }) = \frac{{B_2 }}{2} - c_1 \cdot \gamma + \int_1^\infty {\left[ {R(z) - \frac{{l_0 }}{{\sqrt z }} - \frac{{l_1 }}{z} - \frac{{l_2 }}{{z\sqrt z }}} \right]} } \sqrt z dz,$$ where the zn are eigenvalues lying along the positive semi-axis, z n 2 n, $$l_0 = \frac{\pi }{2}, l_1 = - \frac{1}{2}, l_2 = - \frac{1}{4}\int_0^\pi {q(x) dx,} c_1 = - \frac{2}{\pi }l_2 ,$$ , B2 is a Bernoulli number, γ is Euler's constant, and \(R(z)\) is the trace of the resolvent of a Sturm-Liouville operator.  相似文献   

11.
Пусть Tn(f)={L1(f), ..., Ln(f)} — набор линейных функционал ов, заданных на простран стве \(C_{(r - 1)} (\parallel f\parallel _{C_{(r - 1)} } = \mathop {\max }\limits_{0 \leqq i \leqq r - 1} \parallel f^{(i)} \parallel _C );A_{n,r}\) — множество всех так их наборов функцио налов; С2n, 2 — множество всех н аборов из 2n функциона лов вида $$T_{2n} (f) = \{ f(x_1 ), \ldots ,f(x_n ),f'(x_1 ), \ldots ,f'(x_n )\}$$ и s: Еn→Е1. Доказано, что е слиW r множество всех 2π-периодических функ цийfεW∞0, 2πr, то приr=1,2,3,... ирε(1, ∞) и $$\begin{gathered} \mathop {\inf }\limits_{T_{2n} \in A_{2n,r} } \parallel \mathop {\inf }\limits_s \mathop {\sup }\limits_{f \in W_\infty ^r } |f( \cdot ) - s(T_{2n} ,f, \cdot )|\parallel _p = \parallel \varphi _{n,r} \parallel _p \hfill \\ \mathop {\inf }\limits_{T_{2n} \in C_{2n,2} } \parallel \mathop {\inf }\limits_s \mathop {\sup }\limits_{f \in W_\infty ^r } |f( \cdot ) - s(T_{2n} ,f, \cdot )|\parallel _p = \parallel \parallel \varphi _{n,r} \parallel _\infty - \varphi _{n,r} \parallel _p , \hfill \\ \end{gathered}$$ где ?n,rr-й периодичес кий интеграл, в средне м равный нулю на периоде, от фун кции ?n, 0t=sign sinnt. При этом указан ы оптимальные методы приближенного вычис ления.  相似文献   

12.
Letf (z) be an entire function λn(n=0,1,2,...) complex numbers, such that the system f(λn n=0 is not complete in the circle ¦z¦n(z) have the form \(\sum\nolimits_{k = 0}^{p_n } {\alpha _{nk} } f(\lambda _k \cdot z)\) . We study the properties of the limit function of the sequence Qn(z) in the case when $$f(z) = 1 + \sum\nolimits_{n = 1}^\infty {\frac{{z^n }}{{P(1)P(2)...P(n)}}} ,$$ . where P(z) is a polynomial having at least one negative integral root.  相似文献   

13.
Let \(\chi _0^n = \left\{ {X_t } \right\}_0^n \) be a martingale such that 0≦Xi≦1;i=0, …,n. For 0≦p≦1 denote by ? p n the set of all such martingales satisfying alsoE(X0)=p. Thevariation of a martingale χ 0 n is denoted byV 0 n and defined by \(V(\chi _0^n ) = E\left( {\sum {_{l = 0}^{n - 1} } \left| {X_{l + 1} - X_l } \right|} \right)\) . It is proved that $$\mathop {\lim }\limits_{n \to \infty } \left\{ {\mathop {Sup}\limits_{x_0^n \in \mathcal{M}_p^n } \left[ {\frac{1}{{\sqrt n }}V(\chi _0^n )} \right]} \right\} = \phi (p)$$ , where ?(p) is the well known normal density evaluated at itsp-quantile, i.e. $$\phi (p) = \frac{1}{{\sqrt {2\pi } }}\exp ( - \frac{1}{2}\chi _p^2 ) where \int_{ - \alpha }^{x_p } {\frac{1}{{\sqrt {2\pi } }}\exp ( - \frac{1}{2}\chi ^2 )} dx = p$$ . A sequence of martingales χ 0 n ,n=1,2, … is constructed so as to satisfy \(\lim _{n \to \infty } (1/\sqrt n )V(\chi _0^n ) = \phi (p)\) .  相似文献   

14.
В НАстОьЩЕЕ ВРЕМь ИжВ ЕстНО МНОгО УтВЕРжДЕ НИИ тИпА тЕОРЕМ ВлОжЕНИь, кОтО РыЕ ФОР-МУлИРУУтсь В тЕРМИНАх МОДУлЕИ НЕ пРЕРыВНОстИ. ДАННАь РАБОтА сОДЕРж Ит НЕскОлькО тЕОРЕМ В лОжЕНИь с УслОВИьМИ, ВыРАжЕННы МИ В тЕРМИНАх НАИлУЧшИх п РИБлИжЕНИИE n(?,p) ФУНкц ИИ ? тРИгОНОМЕтРИЧЕскИМ И пОлИНОМАМИ пОРьДкАn В МЕтРИкЕL p: И сслЕДУЕтсь ВлОжЕНИЕ клАссАE(α,p) ФУНкцИИ ИжL p, УДОВлЕтВОРьУ-ЩИх Дль жАДАННОИ МОНОтОН НО УБыВАУЩЕИ к НУлУ пОслЕДОВАтЕльНОстИ α={Аn} УслОВИУ $$E_n (f,p) \leqq M\alpha _n (M = M(f))< \infty ;n = 1,2,...).$$ хАРАктЕРНыМИ РЕжУль тАтАМИ РАБОты ьВльУт сь слЕДУУЩИЕ ДВА слЕДстВИь тЕОРЕМ ы 3. слЕДстВИЕ 1. пУстьР≧1И Β>?1.ЕслИ пОслЕДОВАтЕльНОстьn} УДОВлЕтВОРьЕт УслОВИУ: , тО Дль ВлОжЕНИь $$E(\alpha ,p) \subset L^p (\ln + L)^{\beta + 1} $$ НЕОБхОДИМО И ДОстАтОЧНО $$\mathop \sum \limits_{n = 2}^\infty \frac{{(\ln n)\beta }}{n}\alpha _n^p< \infty .$$ слЕДстВИЕ 2.ЕслИ v>p≧1,Β≧0 И {Аn} УДОВлЕтВОРьЕт УслОВИУ (1),тО Дль ВлОжЕ НИь $$E(\alpha ,p) \subset L^\nu (\ln + L)^\beta $$ НЕОБхОДИМО И ДОстАтО ЧНО $$\mathop \sum \limits_{n = 2}^\infty n^{\nu /p - 2} (\ln + n)^\beta \alpha _n^\nu< \infty ,$$   相似文献   

15.
Arithmetic properties of series of the form $\sum\nolimits_{n = 0}^\infty {p(n)} \cdot n!$ , p(n) ?? ?[x] are studied.  相似文献   

16.
Let σ > 0. For 1 ≦ p ≦ ∞, the Bernstein space B σ p is a Banach space of all fL p (?) such that f is bandlimited to σ; that is, the distributional Fourier transform of f is supported in [?σ,σ]. We study the approximation of fB σ p by finite trigonometric sums $$ P_\tau (x) = \chi _\tau (x) \cdot \sum\limits_{|k| \leqq \sigma \tau /\pi } {c_{k,\tau } e^{i\frac{\pi } {\tau }kx} } $$ in L p norm on ? as τ → ∞, where χ τ denotes the indicator function of [?τ, τ].  相似文献   

17.
В работе доказываютс я следующие утвержде ния. Теорема I.Пусть ? n ↓0u \(\sum\limits_{n = 0}^\infty {\varepsilon _n^2 = + \infty } \) .Тогд а существует множест во Е?[0, 1]с μЕ=0 такое что:1. Существует ряд \(\sum\limits_{n = 0}^\infty {a_n W_n } (t)\) с к оеффициентами ¦а n ¦≦{in¦n¦, который сх одится к нулю всюду вне E и ε∥an∥>0.2. Если b n ¦=о(ε n )и ряд \(\sum\limits_{n = 0}^\infty {b_n W_n (t)} \) сх одится к нулю всюду вн е E за исключением быть может некоторого сче тного множества точе к, то b n =0для всех п. Теорема 3.Пусть ? n ↓0u \(\mathop {\lim \sup }\limits_{n \to \infty } \frac{{\varepsilon _n }}{{\varepsilon _{2n} }}< \sqrt 2 \) Тогд а существует множест во E?[0, 1] с υ E=0 такое, что:
  1. Существует ряд \(\sum\limits_{n = - \infty }^{ + \infty } {a_n e^{inx} ,} \sum\limits_{n = - \infty }^{ + \infty } {\left| {a_n } \right|} > 0,\) кот орый сходится к нулю в сюду вне E и ¦an≦¦n¦ для n=±1, ±2, ...
  2. Если ряд \(\sum\limits_{n = - \infty }^{ + \infty } {b_n e^{inx} } \) сходится к нулю всюду вне E и ¦bv¦=о(ε ¦n¦), то bn=0 для всех я. Теорема 5. Пусть послед овательности S(1)={ε 0 (1) , ε 1 (1) , ε 2 (1) , ...} u S2 0 (2) , ε 1 (2) . ε 2 (2) монотонно стремятся к нулю, \(\mathop {\lim \sup }\limits_{n \to \infty } \varepsilon ^{(i)} /\varepsilon _{2n}^{(i)}< 2,i = 1,2\) , причем \(\mathop {\lim }\limits_{n \to \infty } \varepsilon _n^{(2)} /\varepsilon _n^{(i)} = + \infty \) . Тогда для каждого ε>O н айдется множество Е? [-π,π], μE >2π — ε, которое является U(S1), но не U(S1) — множеством для тригонометричес кой системы. Аналог теоремы 5 для си стемы Уолша был устан овлен в [7].
  相似文献   

18.
The work contains some results pertaining to the solution ψj(x) of the functional equation $$\left| {\Sigma \Psi _j \left( {a_j^T t} \right)} \right| \leqslant \varepsilon ,$$ where a j T =(a1j, a2j, ..., apj)∈ ?p, all the coefficients aij are constant, t=(t1, t2, ..., tp) ∈ ?p, \(a_j^T t = \sum\limits_{i - 1}^p {a_{ij} t_i } ,p \geqslant 2\) and the relation (*) is satisfied for all Inequality (*) is connected with certain characterization theorems of probability theory and statistics. For simplicity, it is assumed that the ψj(x) are continuous functions, x∈?1. The following basic ressult is obtained.  相似文献   

19.
LetQ(x) denote a quadratic form over the rational integers in four variables (x=(x1,...,x4)). ThenQ is representable as a symmetric matrix. Assume this matrix to be non-singular modp(p≠2 prime); then the “inverse” quadratic formQ ?1 modp can be defined. Letf:?4→? be defined such that the Fourier transformf exists and the sum $$\sum\limits_{x \in \mathbb{Z}^4 } {f(c x), c \in \mathbb{R}, c \ne 0} $$ is convergent. Furthermore, letm=p 1...p k be the product ofk distinct primes withm>1, 2×m; let $$\varepsilon = \prod\limits_{i = 1}^k {\left( {\frac{{\det Q}}{{p_i }}} \right)} \ne 0$$ for the Legendre symbol $$\left( {\frac{ \cdot }{p}} \right)$$ ; define $$B_i (Q,x) = \left\{ {\begin{array}{*{20}c} {1 for Q(x) \equiv 0\bmod p_i } \\ , \\ {0 for Q(x)\not \equiv 0\bmod p_i } \\ \end{array} } \right.$$ and forr∈?,r>0, $$F(Q,f,r) = \sum\limits_{x \in \mathbb{Z}^4 } {\left( {\prod\limits_{i = 1}^k {\left( {B_i (Q,x) - \frac{1}{{p_i }}} \right)} } \right)f(r^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} x)} $$ Then we have $$F(Q,f,m) = \varepsilon F(Q^{ - 1} ,\hat f,m)$$   相似文献   

20.
We study new series of the form $\sum\nolimits_{k = 0}^\infty {f_k^{ - 1} \hat P_k^{ - 1} (x)} $ in which the general term $f_k^{ - 1} \hat P_k^{ - 1} (x)$ , k = 0, 1, …, is obtained by passing to the limit as α→?1 from the general term $\hat f_k^\alpha \hat P_k^{\alpha ,\alpha } (x)$ of the Fourier series $\sum\nolimits_{k = 0}^\infty {f_k^\alpha \hat P_k^{\alpha ,\alpha } (x)} $ in Jacobi ultraspherical polynomials $\hat P_k^{\alpha ,\alpha } (x)$ generating, for α> ?1, an orthonormal system with weight (1 ? x 2)α on [?1, 1]. We study the properties of the partial sums $S_n^{ - 1} (f,x) = \sum\nolimits_{k = 0}^n {f_k^{ - 1} \hat P_k^{ - 1} (x)} $ of the limit ultraspherical series $\sum\nolimits_{k = 0}^\infty {f_k^{ - 1} \hat P_k^{ - 1} (x)} $ . In particular, it is shown that the operator S n ?1 (f) = S n ?1 (f, x) is the projection onto the subspace of algebraic polynomials p n = p n (x) of degree at most n, i.e., S n (p n ) = p n ; in addition, S n ?1 (f, x) coincides with f(x) at the endpoints ±1, i.e., S n ?1 (f,±1) = f(±1). It is proved that the Lebesgue function Λ n (x) of the partial sums S n ?1 (f, x) is of the order of growth equal to O(ln n), and, more precisely, it is proved that $\Lambda _n (x) \leqslant c(1 + \ln (1 + n\sqrt {1 - x^2 } )), - 1 \leqslant x \leqslant 1$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号