首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We introduce and study two-stage stochastic symmetric programs with recourse to handle uncertainty in data defining (deterministic) symmetric programs in which a linear function is minimized over the intersection of an affine set and a symmetric cone. We present a Benders’ decomposition-based interior point algorithm for solving these problems and prove its polynomial complexity. Our convergence analysis proved by showing that the log barrier associated with the recourse function of stochastic symmetric programs behaves a strongly self-concordant barrier and forms a self-concordant family on the first stage solutions. Since our analysis applies to all symmetric cones, this algorithm extends Zhao’s results [G. Zhao, A log barrier method with Benders’ decomposition for solving two-stage stochastic linear programs, Math. Program. Ser. A 90 (2001) 507–536] for two-stage stochastic linear programs, and Mehrotra and Özevin’s results [S. Mehrotra, M.G. Özevin, Decomposition-based interior point methods for two-stage stochastic semidefinite programming, SIAM J. Optim. 18 (1) (2007) 206–222] for two-stage stochastic semidefinite programs.  相似文献   

2.
Regularization techniques, i.e., modifications on the diagonal elements of the scaling matrix, are considered to be important methods in interior point implementations. So far, regularization in interior point methods has been described for linear programming problems, in which case the scaling matrix is diagonal. It was shown that by regularization, free variables can be handled in a numerically stable way by avoiding column splitting that makes the set of optimal solutions unbounded. Regularization also proved to be efficient for increasing the numerical stability of the computations during the solutions of ill-posed linear programming problems. In this paper, we study the factorization of the augmented system arising in interior point methods. In our investigation, we generalize the methods developed and used in linear programming to the case when the scaling matrix is positive semidefinite, but not diagonal. We show that regularization techniques may be applied beyond the linear programming case.  相似文献   

3.
Multistage stochastic linear programming (MSLP) is a powerful tool for making decisions under uncertainty. A deterministic equivalent problem of MSLP is a large-scale linear program with nonanticipativity constraints. Recently developed infeasible interior point methods are used to solve the resulting linear program. Technical problems arising from this approach include rank reduction and computation of search directions. The sparsity of the nonanticipativity constraints and the special structure of the problem are exploited by the interior point method. Preliminary numerical results are reported. The study shows that, by combining the infeasible interior point methods and specific decomposition techniques, it is possible to greatly improve the computability of multistage stochastic linear programs.  相似文献   

4.
We consider distributionally robust two-stage stochastic convex programming problems, in which the recourse problem is linear. Other than analyzing these new models case by case for different ambiguity sets, we adopt a unified form of ambiguity sets proposed by Wiesemann, Kuhn and Sim, and extend their analysis from a single stochastic constraint to the two-stage stochastic programming setting. It is shown that under a standard set of regularity conditions, this class of problems can be converted to a conic optimization problem. Numerical results are presented to show the efficiency of the distributionally robust approach.  相似文献   

5.
Nowadays, due to some social, legal, and economical reasons, dealing with reverse supply chain is an unavoidable issue in many industries. Besides, regarding real-world volatile parameters, lead us to use stochastic optimization techniques. In location–allocation type of problems (such as the presented design and planning one), two-stage stochastic optimization techniques are the most appropriate and popular approaches. Nevertheless, traditional two-stage stochastic programming is risk neutral, which considers the expectation of random variables in its objective function. In this paper, a risk-averse two-stage stochastic programming approach is considered in order to design and planning a reverse supply chain network. We specify the conditional value at risk (CVaR) as a risk evaluator, which is a linear, convex, and mathematically well-behaved type of risk measure. We first consider return amounts and prices of second products as two stochastic parameters. Then, the optimum point is achieved in a two-stage stochastic structure regarding a mean-risk (mean-CVaR) objective function. Appropriate numerical examples are designed, and solved in order to compare the classical versus the proposed approach. We comprehensively discuss about the effectiveness of incorporating a risk measure in a two-stage stochastic model. The results prove the capabilities and acceptability of the developed risk-averse approach and the affects of risk parameters in the model behavior.  相似文献   

6.
Hopfield neural networks and affine scaling interior point methods are combined in a hybrid approach for solving linear optimization problems. The Hopfield networks perform the early stages of the optimization procedures, providing enhanced feasible starting points for both primal and dual affine scaling interior point methods, thus facilitating the steps towards optimality. The hybrid approach is applied to a set of real world linear programming problems. The results show the potential of the integrated approach, indicating that the combination of neural networks and affine scaling interior point methods can be a good alternative to obtain solutions for large-scale optimization problems.  相似文献   

7.
We propose a new method for certain multistage stochastic programs with linear or nonlinear objective function, combining a primal interior point approach with a linear-quadratic control problem over the scenario tree. The latter problem, which is the direction finding problem for the barrier subproblem is solved through dynamic programming using Riccati equations. In this way we combine the low iteration count of interior point methods with an efficient solver for the subproblems. The computational results are promising. We have solved a financial problem with 1,000,000 scenarios, 15,777,740 variables and 16,888,850 constraints in 20 hours on a moderate computer.  相似文献   

8.
To solve linear programming problems by interior point methods an approximately centered interior point has to be known. Such a point can be found by an algorithmic approach – a so-called phase 1 algorithm or centering algorithm. For random linear programming problems distributed according to the rotation symmetry model, especially with normal distribution, we present probabilistic results on the quality of the origin as starting point and the average number of steps of a centering algorithm.  相似文献   

9.
《Optimization》2012,61(3):225-233
The literature in the field of interior point methods for linear programming has been almost exclusively algorithm oriented. Recently Güler, Roos, Terlaky and Vial presented a complete duality theory for linear programming based on the interior point approach. In this paper we present a more simple approach which is based on an embedding of the primal problem and its dual into a skew symmetric self-dual problem. This embedding is essentially due Ye, Todd and Mizuno

First we consider a skew symmetric self-dual linear program. We show that the strong duality theorem trivally holds in this case. Then, using the logarithmic barrier problem and the central path, the existence of a strictly complementary optimal solution is proved. Using the embedding just described, we easily obtain the strong duality theorem and the existence of strictly complementary optimal solutions for general linear programming problems  相似文献   

10.
We present a computationally efficient implementation of an interior point algorithm for solving large-scale problems arising in stochastic linear programming and robust optimization. A matrix factorization procedure is employed that exploits the structure of the constraint matrix, and it is implemented on parallel computers. The implementation is perfectly scalable. Extensive computational results are reported for a library of standard test problems from stochastic linear programming, and also for robust optimization formulations.The results show that the codes are efficient and stable for problems with thousands of scenarios. Test problems with 130 thousand scenarios, and a deterministic equivalent linear programming formulation with 2.6 million constraints and 18.2 million variables, are solved successfully.  相似文献   

11.
We show that recently developed interior point methods for quadratic programming and linear complementarity problems can be put to use in solving discrete-time optimal control problems, with general pointwise constraints on states and controls. We describe interior point algorithms for a discrete-time linear-quadratic regulator problem with mixed state/control constraints and show how they can be efficiently-incorporated into an inexact sequential quadratic programming algorithm for nonlinear problems. The key to the efficiency of the interior-point method is the narrow-banded structure of the coefficient matrix which is factorized at each iteration.This research was supported by the Applied Mathematical Sciences Subprogram of the Office of Energy Research, US Department of Energy, under Contract W-31-109-Eng-38.  相似文献   

12.
In this work, the optimal adjustment algorithm for p coordinates, which arose from a generalization of the optimal pair adjustment algorithm is used to accelerate the convergence of interior point methods using a hybrid iterative approach for solving the linear systems of the interior point method. Its main advantages are simplicity and fast initial convergence. At each interior point iteration, the preconditioned conjugate gradient method is used in order to solve the normal equation system. The controlled Cholesky factorization is adopted as the preconditioner in the first outer iterations and the splitting preconditioner is adopted in the final outer iterations. The optimal adjustment algorithm is applied in the preconditioner transition in order to improve both speed and robustness. Numerical experiments on a set of linear programming problems showed that this approach reduces the total number of interior point iterations and running time for some classes of problems. Furthermore, some problems were solved only when the optimal adjustment algorithm for p coordinates was used in the change of preconditioners.  相似文献   

13.
We describe a way of generating a warm-start point for interior point methods in the context of stochastic programming. Our approach exploits the structural information of the stochastic problem so that it can be seen as a structure-exploiting initial point generator. We solve a small-scale version of the problem corresponding to a reduced event tree and use the solution to generate an advanced starting point for the complete problem. The way we produce a reduced tree tries to capture the important information in the scenario space while keeping the dimension of the corresponding (reduced) deterministic equivalent small. We derive conditions which should be satisfied by the reduced tree to guarantee a successful warm-start of the complete problem. The implementation within the HOPDM and OOPS interior point solvers shows remarkable advantages.  相似文献   

14.
Decomposition has proved to be one of the more effective tools for the solution of large-scale problems, especially those arising in stochastic programming. A decomposition method with wide applicability is Benders' decomposition, which has been applied to both stochastic programming as well as integer programming problems. However, this method of decomposition relies on convexity of the value function of linear programming subproblems. This paper is devoted to a class of problems in which the second-stage subproblem(s) may impose integer restrictions on some variables. The value function of such integer subproblem(s) is not convex, and new approaches must be designed. In this paper, we discuss alternative decomposition methods in which the second-stage integer subproblems are solved using branch-and-cut methods. One of the main advantages of our decomposition scheme is that Stochastic Mixed-Integer Programming (SMIP) problems can be solved by dividing a large problem into smaller MIP subproblems that can be solved in parallel. This paper lays the foundation for such decomposition methods for two-stage stochastic mixed-integer programs.  相似文献   

15.
Branch and cut methods for integer programming problems solve a sequence of linear programming problems. Traditionally, these linear programming relaxations have been solved using the simplex method. The reduced costs available at the optimal solution to a relaxation may make it possible to fix variables at zero or one. If the solution to a relaxation is fractional, additional constraints can be generated which cut off the solution to the relaxation, but donot cut off any feasible integer points. Gomory cutting planes and other classes of cutting planes are generated from the final tableau. In this paper, we consider using an interior point method to solve the linear programming relaxations. We show that it is still possible to generate Gomory cuts and other cuts without having to recreate a tableau, and we also show how variables can be fixed without using the optimal reduced costs. The procedures we develop do not require that the current relaxation be solved to optimality; this is useful for an interior point method because early termination of the current relaxation results in an improved starting point for the next relaxation.  相似文献   

16.

In this paper, we investigate a new primal-dual long-step interior point algorithm for linear optimization. Based on the step size, interior point algorithms can be divided into two main groups, short-step, and long-step methods. In practice, long-step variants perform better, but usually, a better theoretical complexity can be achieved for the short-step methods. One of the exceptions is the large-update algorithm of Ai and Zhang. The new wide neighborhood and the main characteristics of the presented algorithm are based on their approach. In addition, we use the algebraic equivalent transformation technique of Darvay to determine new modified search directions for our method. We show that the new long-step algorithm is convergent and has the best known iteration complexity of short-step variants. We present our numerical results and compare the performance of our algorithm with two previously introduced Ai-Zhang type interior point algorithms on a set of linear programming test problems from the Netlib library.

  相似文献   

17.
Monte Carlo sampling-based estimators of optimality gaps for stochastic programs are known to be biased. When bias is a prominent factor, estimates of optimality gaps tend to be large on average even for high-quality solutions. This diminishes our ability to recognize high-quality solutions. In this paper, we present a method for reducing the bias of the optimality gap estimators for two-stage stochastic linear programs with recourse via a probability metrics approach, motivated by stability results in stochastic programming. We apply this method to the Averaged Two-Replication Procedure (A2RP) by partitioning the observations in an effort to reduce bias, which can be done in polynomial time in sample size. We call the resulting procedure the Averaged Two-Replication Procedure with Bias Reduction (A2RP-B). We provide conditions under which A2RP-B produces strongly consistent point estimators and an asymptotically valid confidence interval. We illustrate the effectiveness of our approach analytically on a newsvendor problem and test the small-sample behavior of A2RP-B on a number of two-stage stochastic linear programs from the literature. Our computational results indicate that the procedure effectively reduces bias. We also observe variance reduction in certain circumstances.  相似文献   

18.
In this paper, we consider a primal-dual interior point method for solving nonlinear semidefinite programming problems. We propose primal-dual interior point methods based on the unscaled and scaled Newton methods, which correspond to the AHO, HRVW/KSH/M and NT search directions in linear SDP problems. We analyze local behavior of our proposed methods and show their local and superlinear convergence properties.  相似文献   

19.
In this paper we propose a crash-start technique for interior point methods applicable to multi-stage stochastic programming problems. The main idea is to generate an initial point for the interior point solver by decomposing the barrier problem associated with the deterministic equivalent at the second stage and using a concatenation of the solutions of the subproblems as a warm-starting point for the complete instance. We analyse this scheme and produce theoretical conditions under which the warm-start iterate is successful. We describe the implementation within the OOPS solver and the results of the numerical tests we performed.  相似文献   

20.
Many practical large-scale optimization problems are not only sparse, but also display some form of block-structure such as primal or dual block angular structure. Often these structures are nested: each block of the coarse top level structure is block-structured itself. Problems with these characteristics appear frequently in stochastic programming but also in other areas such as telecommunication network modelling. We present a linear algebra library tailored for problems with such structure that is used inside an interior point solver for convex quadratic programming problems. Due to its object-oriented design it can be used to exploit virtually any nested block structure arising in practical problems, eliminating the need for highly specialised linear algebra modules needing to be written for every type of problem separately. Through a careful implementation we achieve almost automatic parallelisation of the linear algebra. The efficiency of the approach is illustrated on several problems arising in the financial planning, namely in the asset and liability management. The problems are modelled as multistage decision processes and by nature lead to nested block-structured problems. By taking the variance of the random variables into account the problems become non-separable quadratic programs. A reformulation of the problem is proposed which reduces density of matrices involved and by these means significantly simplifies its solution by an interior point method. The object-oriented parallel solver achieves high efficiency by careful exploitation of the block sparsity of these problems. As a result a problem with over 50 million decision variables is solved in just over 2 hours on a parallel computer with 16 processors. The approach is by nature scalable and the parallel implementation achieves nearly perfect speed-ups on a range of problems. Supported by the Engineering and Physical Sciences Research Council of UK, EPSRC grant GR/R99683/01  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号