首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding the nonlinear dynamics of cutting processes is essential for the improvement of machining technology. We study machine cutting processes by two different models, one has been recently introduced by Litak [Litak G. Chaotic vibrations in a regenerative cutting process. Chaos, Solitons & Fractals 2002;13:1531–5] and the other is the classic delay differential equation model. Although chaotic solutions have been found in both models, well known routes to chaos, such as period-doubling or quasi-periodic motion to chaos are not observed in either model. Careful analysis shows that the chaotic motion from the Litak’s model has sharper spectral peaks, a smaller correlation dimension and a smaller value for the largest positive Lyapunov exponent. Implications to the control of chaos in cutting processes are discussed.  相似文献   

2.
In this paper, on the basis of the theories and methods of ecology and ordinary differential equation, a food web system with impulsive perturbations and distributed time delay is established. By using the theories of impulsive equation, small amplitude perturbation skills and comparison technique, we get the condition which guarantees the global asymptotical stability of the prey and intermediate predator eradication periodic solution. On this basis, we get that the food web system is permanent if some parameters are satisfied with certain conditions. In order to show that these conditions are effective, the influences of impulsive perturbations on the inherent oscillation and distributed time delay are studied numerically; these show rich dynamics, such as period-halving bifurcation, chaotic band, narrow or wide periodic window, chaotic crises. Moreover, the computation of the largest Lyapunov exponent shows the chaotic dynamic behavior of the model. Meanwhile, we investigate the qualitative nature of strange attractor by using Fourier spectra. All of these results may be useful in the study of the dynamic complexity of ecosystems.  相似文献   

3.
Chaotic dynamics have been observed in a wide range of population models. In this study, the complex dynamics in a discrete-time ecological model of parasitoid-host-parasitoid are presented. The model shows that the superiority coefficient not only stabilizes the dynamics, but may strongly destabilize them as well. Many forms of complex dynamics were observed, including pitchfork bifurcation with quasi-periodicity, period-doubling cascade, chaotic crisis, chaotic bands with narrow or wide periodic window, intermittent chaos, and supertransient behavior. Furthermore, computation of the largest Lyapunov exponent demonstrated the chaotic dynamic behavior of the model.  相似文献   

4.
低噪声水平混沌时序的预测技术及其应用研究   总被引:3,自引:0,他引:3  
研究含有噪声的混沌时序的除噪及其重构技术,基于除噪混沌数据的预测技术及其应用.应用混沌时序的奇异值分解技术对混沌时序的噪声进行了剥离,将混沌时序的相空间分解成为值域空间和虚拟的噪声空间,在值域空间内重构了原混沌时序,并在此基础上,确立了非线性模型的阶,利用所提出的非线性模型对时序进行了预测研究工作,研究结果表明,该非线性模型具有很强的函数逼近能力,所采用的混沌预测方法对相应的实际问题有着一定的指导意义.  相似文献   

5.
This paper considers nonlinear effects in the dynamics of biological models. We describe two dynamic systems elaborated for simulating populations of Russian sturgeon and stellate sturgeon and based on formalization of the relationship between the spawning stock and recruitment according to the analysis of observational data. For the numerical study of differential equations with a structurally changing right-hand side, we use the method of representing models based on maps of states with conditional transitions. For dynamic systems, the presence of qualitatively different modes of the behavior of trajectories is revealed: stable periodic oscillations (sturgeon model) and unstable chaotic oscillations (stellate model) realized in a limited time interval due to a chaotic subset not being an attractor, which is present in the phase space.  相似文献   

6.
In this study, we investigate the dynamical behavior of network traffic flow. We first build a two-stage mathematical model to analyze the complex behavior of network flow, a dynamical model, which is based on the dynamical gravity model proposed by Dendrinos and Sonis [Dendrinos DS, Sonis M. Chaos and social-spatial dynamic. Berlin: Springer-Verlag; 1990] is used to estimate the number of trips. Considering the fact that the Origin–Destination (O–D) trip cost in the traffic network is hard to express as a functional form, in the second stage, the user equilibrium network assignment model was used to estimate the trip cost, which is the minimum cost of used path when user equilibrium (UE) conditions are satisfied. It is important to use UE to estimate the O–D cost, since a connection is built among link flow, path flow, and O–D flow. The dynamical model describes the variations of O–D flows over discrete time periods, such as each day and each week. It is shown that even in a system with dimensions equal to two, chaos phenomenon still exists. A “Chaos Propagation” phenomenon is found in the given model.  相似文献   

7.
8.
Recently [Solak E, Çokal C, Yildiz OT Biyikogˇlu T. Cryptanalysis of Fridrich’s chaotic image encryption. Int J Bifur Chaos 2010;20:1405-1413] cryptanalyzed the chaotic image encryption algorithm of [Fridrich J. Symmetric ciphers based on two-dimensional chaotic maps. Int J Bifur Chaos 1998;8(6):1259-1284], which was considered a benchmark for measuring security of many image encryption algorithms. This attack can also be applied to other encryption algorithms that have a structure similar to Fridrich’s algorithm, such as that of [Chen G, Mao Y, Chui, C. A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Soliton Fract 2004;21:749-761]. In this paper, we suggest a novel image encryption algorithm based on a three dimensional (3D) chaotic map that can defeat the aforementioned attack among other existing attacks. The design of the proposed algorithm is simple and efficient, and based on three phases which provide the necessary properties for a secure image encryption algorithm including the confusion and diffusion properties. In phase I, the image pixels are shuffled according to a search rule based on the 3D chaotic map. In phases II and III, 3D chaotic maps are used to scramble shuffled pixels through mixing and masking rules, respectively. Simulation results show that the suggested algorithm satisfies the required performance tests such as high level security, large key space and acceptable encryption speed. These characteristics make it a suitable candidate for use in cryptographic applications.  相似文献   

9.
A dynamic Cournot duopoly game, whose time evolution is modeled by the iteration of a map T:(x,y)→(r1(y),r2(x)), is considered. Results on the existence of cycles and more complex attractors are given, based on the study of the one-dimensional map F(x)=(r1r2)(x). The property of multistability, i.e. the existence of many coexisting attractors (that may be cycles or cyclic chaotic sets), is proved to be a characteristic property of such games. The problem of the delimitation of the attractors and of their basins is studied. These general results are applied to the study of a particular duopoly game, proposed in M. Kopel [Chaos, Solitons & Fractals, 7 (12) (1996) 2031–2048] as a model of an economic system, in which the reaction functions r1 and r2 are logistic maps.  相似文献   

10.
The supply chain network is a complex nonlinear system that may have a chaotic behavior. This network involves multiple entities that cooperate to meet customers demand and control network inventory. Although there is a large body of research on measurement of chaos in the supply chain, no proper method has been proposed to control its chaotic behavior. Moreover, the dynamic equations used in the supply chain ignore many factors that affect this chaotic behavior. This paper offers a more comprehensive modeling, analysis, and control of chaotic behavior in the supply chain. A supply chain network with a centralized decision-making structure is modeled. This model has a control center that determines the order of entities and controls their inventories based on customer demand. There is a time-varying delay in the supply chain network, which is equal to the maximum delay between entities. Robust control method with linear matrix inequality technique is used to control the chaotic behavior. Using this technique, decision parameters are determined in such a way as to stabilize network behavior.  相似文献   

11.
In this paper, on the basis of the theories and methods of ecology and ordinary differential equation, an ecological model with an impulsive control strategy is established. By using the theories of impulsive equation, small amplitude perturbation skills and comparison technique, we get the condition which guarantees the global asymptotical stability of the lowest-level prey and mid-level predator eradication periodic solution. It is proved that the system is permanent. Further, influences of the impulsive perturbation on the inherent oscillation are studied numerically, which shows rich dynamics, such as period-doubling bifurcation, period-halving bifurcation, chaotic band, narrow or wide periodic window, chaotic crises,etc. Moreover, the computation of the largest Lyapunov exponent demonstrates the chaotic dynamic behavior of the model. At the same time, we investigate the qualitative nature of strange attractor by using Fourier spectra. All these results may be useful for study of the dynamic complexity of ecosystems.  相似文献   

12.
The delay logistic map with two types of q-deformations: Tsallis and Quantum-group type are studied. The stability of the logistic map and its bifurcation scheme is analyzed as a function of the deformation and delay parameters. Chaos is suppressed in a certain region of deformation and delay parameter space. By introducing delay, the steady state in one type of deformation is maintained while chaotic behavior is recovered in another type.  相似文献   

13.
Chaos degree defined through two complexities in information dynamics is applied to some deterministic dynamical models. It is shown that this degree well describes the chaotic feature of the models.  相似文献   

14.
15.
To estimate the ultimate bound and positively invariant set for a dynamic system is an important but quite challenging task in general. In this paper, we attempt to investigate the ultimate bound and positively invariant set for two specific systems, the Lorenz system and a unified chaotic system. We derive an ellipsoidal estimate of the ultimate bound and positively invariant set for the Lorenz system, for all the positive values of its parameters a, b and c, and obtain the minimum value of volume for the ellipsoid. Comparing with the best results in the current literature [D. Li, J. Lu, X. Wu, G. Chen, Estimating the bounds for the Lorenz family of chaotic systems, Chaos Solitons Fractals 23 (2005) 529-534; X. Liao, On the global basin of attraction and positively invariant set for the Lorenz chaotic system and its application in chaos control and synchronization, Sci. China Ser. E 34 (2004) 1404-1419], our new results fill up the gap of the estimate for the cases of 0<a<1 and 0<b<2 [X. Liao, On the global basin of attraction and positively invariant set for the Lorenz chaotic system and its application in chaos control and synchronization, Sci. China Ser. E 34 (2004) 1404-1419]. Furthermore, the estimation derived here contains the results given in [D. Li, J. Lu, X. Wu, G. Chen, Estimating the bounds for the Lorenz family of chaotic systems, Chaos Solitons Fractals 23 (2005) 529-534] and [X. Liao, On the global basin of attraction and positively invariant set for the Lorenz chaotic system and its application in chaos control and synchronization, Sci. China Ser. E 34 (2004) 1404-1419] as special cases. Along the same line, we also provide estimates of cylindrical and ellipsoidal bounds for a unified chaotic system, for its parameter range , and obtain the minimum value of volume for the ellipsoid. The estimate is more accurate than and also extends the result of [D. Li, J. Lu, X. Wu, G. Chen, Estimating the bounds for the Lorenz family of chaotic systems, Chaos Solitons Fractals 23 (2005) 529-534] and [X. Liao, On the global basin of attraction and positively invariant set for the Lorenz chaotic system and its application in chaos control and synchronization, Sci. China Ser. E 34 (2004) 1404-1419].  相似文献   

16.
A dynamic Cournot game characterized by three boundedly rational players is modeled by three nonlinear difference equations. The stability of the equilibria of the discrete dynamical system is analyzed. As some parameters of the model are varied, the stability of Nash equilibrium is lost and a complex chaotic behavior occurs. Numerical simulation results show that complex dynamics, such as, bifurcations and chaos are displayed when the value of speed of adjustment is high. The global complexity analysis can help players to take some measures and avoid the collapse of the output dynamic competition game.  相似文献   

17.
We present models and computational results which indicate that the spatial and temporal regularity seen in Proteus mirabilis swarm-colony development is largely an expression of a specific, nearly precise age of dedifferentiation in the cell cycle from motile swarmer cells to immotile dividing cells. This contrasts strongly with reaction–diffusion models of Proteus behavior that ignore or average out the age structure of the cell population and instead use only density-dependent mechanisms. We argue the necessity of retaining this known biological feature using explicit age structure in the model, and suggest that certain experiments may validate this underlying mechanism empirically.  相似文献   

18.
This paper investigates the complex dynamics in a discrete-time model of predator–prey interaction with a Beddington–DeAngelis functional response. Local stability analysis of this model is carried out and many forms of complexities are observed using ecology theories and numerical simulation of the global behavior. Furthermore, the existence of a strange attractor and computation of the largest Lyapunov exponent also demonstrate the chaotic dynamic behavior of the model. The results show that the system exhibits rich complexity features such as stable, periodic and chaotic dynamics.  相似文献   

19.
In the last years we have witnessed remarkable progress in providing efficient algorithmic solutions to the problem of computing best journeys (or routes) in schedule-based public transportation systems. We have now models to represent timetables that allow us to answer queries for optimal journeys in a few milliseconds, also at a very large scale. Such models can be classified into two types: those representing the timetable as an array, and those representing it as a graph. Array-based models have been shown to be very effective in terms of query time, while graph-based ones usually answer queries by computing shortest paths, and hence they are suitable to be combined with the speed-up techniques developed for road networks.In this paper, we study the behavior of graph-based models in the prominent case of dynamic scenarios, i.e., when delays might occur to the original timetable. In particular, we make the following contributions. First, we consider the graph-based reduced time-expanded model and give a simplified and optimized routine for handling delays, and a re-engineered and fine-tuned query algorithm. Second, we propose a new graph-based model, namely the dynamic timetable model, natively tailored to efficiently incorporate dynamic updates, along with a query algorithm and a routine for handling delays. Third, we show how to adapt the ALT algorithm to such graph-based models. We have chosen this speed-up technique since it supports dynamic changes, and a careful implementation of it can significantly boost its performance. Finally, we provide an experimental study to assess the effectiveness of all proposed models and algorithms, and to compare them with the array-based state of the art solution for the dynamic case. We evaluate both new and existing approaches by implementing and testing them on real-world timetables subject to synthetic delays.Our experimental results show that: (i) the dynamic timetable model is the best model for handling delays; (ii) graph-based models are competitive to array-based models with respect to query time in the dynamic case; (iii) the dynamic timetable model compares favorably with both the original and the reduced time-expanded model regarding space; (iv) combining the graph-based models with speed-up techniques designed for road networks, such as ALT, is a very promising approach.  相似文献   

20.
We review our recent efforts to understand why chaotic dynamics is rarely observed in natural populations. The study of two-model ecosystems considered in this paper suggests that chaos exists in narrow parameter ranges. This dynamical behaviour is caused by the crisis-induced sudden death of chaotic attractors. The computed bifurcation diagrams and basin boundary calculations reinforce our earlier conclusion [Chaos, Solitons & Fractals 8 (12) (1997) 1933; Int J Bifurc Chaos 8 (6) (1998) 1325] that the reason why chaos is rarely observed in natural populations is hidden within the mathematical structure of the ecological interactions and not with the problem associated with the data (insufficient length, precision, noise, etc.) and its analysis. We also argue that crisis-limited chaotic dynamics can be commonly found in model terrestrial ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号