首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Guo  Yanhe  Ge  Qingchun  Lin  Hai  Lin  Huakuan  Zhu  Shourong 《Transition Metal Chemistry》2003,28(6):668-675
The ligands 1,10-N,N-bis(2-hydroxymethylbenzoyl)-1,4,7,10-tetraazadecane (L1) and 1,11-N,N-bis(2-hydroxymethylbenzoyl)-1,4,8,11-tetraazaundecane (L2) have been synthesized. The stability constants of NiII complexes of ligands L1 and L2 have been studied at 25 °C using pH titrations. The kinetics of general acid (HCl, 0.04–2.34 mol dm–3) or buffer (DEPP or DESPEN, 0.05 mol dm–3, pH 4.83–5.72)-catalyzed dissociation of these NiII complexes have been investigated at 25 °C using a stopped-flow spectrophotometer. The ionic strength of solution was controlled at I = 2.34 mol dm–3 (KCl + HCl) and I = 0.1 mol dm–3 (KNO3, buffer), respectively. The kinetic dissociation of NiII complexes catalyzed by HCl obeys the equilibrium k obs = k 1d + k 2H[H+], whereas in buffer solution the observed rate constant k obs = k d + k 1H[H+]. At pH < 1.5, both the proton-assisted and direct protonation pathways contribute to the rates, whereas solvation is the dominant pathway at pH > 6. In the 4.8–5.7 pH range, the complexes dissociate mainly through a proton-assisted pathway.  相似文献   

2.
Summary The kinetics of formation of square-planar CuII and NiII complexes of the quadridentate ligand, ethylenebisbiguanide, have been studied spectrophotometrically in aqueous HOAc–NaOAc buffer, at ionic strength 0.2 mol dm–3, in the 25–35°C temperature range. The observed rate constants for the formation reactions are independent of pH (and of OAc concentration) in the pH range used (3.6–4.8 for CuII and 5.0–5.8 for NiII) where the product complexes form stoichiometrically, but show first-order dependence on the ligand concentration;i.e. kobs=kf[L]total. At 25°C kf values (dm3 mol–1s–1) are 35.2±0.4 for CuII and (8.4±0.1)×10–3 for NiII. The mechanism of the reactions is discussed.  相似文献   

3.
Summary New CuII, CoII, NiII, CdII, ZnII, HgII, PdII and UO 2 II complexes of the Schiff base ligand (FBz) formed by condensation of fluorenone withS-benzyldithiocarbazate have been prepared and characterized by elemental analysis, magnetic and spectroscopic measurements. The Cu(FBz)2(Cl)2 complex is paramagnetic. The Ni(FBz-H)2 complex is diamagnetic, four-coordinate and square planar. The CoII ion is oxidized in the presence of the Schiff base with the concomitant formation of CoIII complex of empirical formulae Co(FBz)Cl3OH2. The ligand was tested as a corrosion inhibitor for copper. Inhibition efficiency was calculated and the limiting concentration of FBz to give maximum efficiency was 10–3 mol dm–3 at 25°C. The polarographic reduction of FBz was investigated in Britton-Robinson buffer solutions of pH 3–10. The polarograms at dme indicated that the depolarizer is reduced through two two-electron irreversible diffusion-controlled waves. The mechanistic pathway of the electrode reaction is commensurate with this result.  相似文献   

4.
Summary [Ru(TPT)2]2+ undergoes nucleophilic attack at the ligand in aqueous solutions of HO. The reaction is reversible and the equilibrium can be followed spectrophotometrically. In acid solution, the free nitrogen atoms of the uncoordinated pyridine residues are protonated to form a new species. Two reactions of [Fe(TPT)2]2+ take place in H2O over extended periods. The first is the well-known dissociative process, but the second appears to involve reaction at the ligand. The results are used to reinterpret some of the chemistry of complexes of TPT and related ligands.Part XIX: J. A. Arce Sagüés, R. D. Gillard, R. J. Lancashire and P. A. Williams,J. Chem. Soc. Dalton Trans., in press.  相似文献   

5.
Sr2CeO4 has been prepared by sol-combustion and co-precipitate routes and the resulting products have been characterized by XRD analysis. The molar enthalpies of solution of Sr2CeO4(s), Sr(NO3)2(s) and Ce(NO3)3·6H2O(s) in 0.150 dm–3 of (4.41 mol dm–3 H2O2+4.23 mol dm–3 of HNO3) solvent as well as the molar enthalpies of solution of Sr2CeO4(s), SrCl2(s) and CeCl3(s) in 0.150 dm3 of (1.47 mol dm–3 H2O2+3.05 mol dm–3 of HClO4) solvent have been measured using an isoperibol type calorimeter. From these results and other auxiliary data, the standard molar enthalpy of formation of Sr2CeO4 has been derived to be –2277.3±3.1 kJ mol–1 at 298.15 K. This is the first reported thermodynamic data on this compound.  相似文献   

6.
Summary Base hydrolysis of methyl ethylenediaminemonoacetate has been studied at I=0.1 mol dm–3 (NaClO4) over the pH range 7.4–8.8 at 25 °C. The proton equilibria of the ligand can be represented by the equations, where E is the free unprotonated ester species. Values of pK1 and pK2 are 4.69 andca. 7.5 at 25° (I=0.1 mol dm–3). For base hydrolysis of EH+, kOH=1.1×103 dm3 mol–1 s–1 at 25 °C. The species E is shown to undergo lactamisation to give 2-oxopiperazine (klact ca. 1×10–3 s–1) at 25 °C. Formation of the lactam is indicated both by u.v. measurements and by isolation and characterisation of the compound.Base hydrolysis of the ester ligand in the complex [CuE]2+ has been studied over a range of pH and temperature, k OH 25 =9.3×104 dm3 mol–1 s–1 with H=107 kJ mol–1 and S 298 =209 JK–1 mol–1. Base hydrolysis of [CuE]2+ is estimated to be some 1055 fold faster than that of the free ester ligand. The results suggest that base hydrolysis occursvia a chelate ester species in which the methoxycarbonyl group of the ligand is bonded to copper(II).  相似文献   

7.
The aggregation of dodecyltrimethylammonium hydroxide (DTAOH) aqueous solutions has been studied by several methods. It is stepwise and four critical points were found. AtC T=(2.51±0.10)×10–4 mol · dm–3 the surface excess becomes zero, atC T=(1.300±0.041)×10–3 mol · dm–3 small aggregates from, which grow with concentration. AtC T=(1.108±0.010)×10–2 mol · dm–3 true micelles form (CMC) and at (3.02±0.28)×10–2 mol · dm–3 the structure of micelles probably changes affecting their properties. The DTAOH micelles are highly ionized (=0.8) at the CMC, and decreases to reach very small values when the total concentration increases.  相似文献   

8.
Summary The preparation of the series ofcis- andtrans-[Co(NH3)4(RNH2)Cl]2+ complexes (withcis, R = Me orn-Pr andtrans, R = Me, Et,n-Pr,n-Bu ori-Bu) is described. The u.v-visible spectra indicate a decrease of the ligand field on increasing chain length. Infrared spectra show an enhanced Co-Cl bond strength compared to the pentaammine. Partial molar volumes of the complex cations do not reveal steric compression. From proton exchange studies in D2O it follows that [Co(NH3)5Cl]2+ and thecis- andtrans-[Co(NH3)4-(CH3NH2)C1]2+ complexes exchange the amine protons on the grouptrans to the chloro faster than those on thecis. A coordinated methylamine group exchanges its amine protons slower than a corresponding NH3 group in the parent pentaammine, but the methyl introduction accelerates the exchange of the other NH3 groups. The aquation of thetrans-alkylamine complexes (studied at 52° C) is acceleratedca. 10 times compared to the parent pentaammine, irrespective of the nature of the alkyl group. Thecis complexes do not show this acceleration of aquation. In base hydrolysis (studied at 25° C) thecis complexes are the most reactive (a factor 20 over the parent ion). Thecis/trans product ratio in base hydrolysis and the competition ratio in the presence of azide ions were calculated from the 500 MHz1H n.m.r. spectra, which display distinctly different alkyl resonances for each individual complex. Thecis ions react under stereochemical retention of configuration; thetrans compounds give 10±1%trans tocis rearrangement. The ionic strength (4 mol dm–3) and the pH do not affect this result. The same product ratio is obtained in methanol-water and DMSO-water mixtures. Ammoniation in liquid ammonia gives the same ratios as in base hydrolysis, base-catalyzed solvolysis in neat methylamine gives stereochemical retention for both thecis- andtrans-methylamine ion. The product competition ratio (Co-N3)/(Co-OH2) for thecis compounds and the bulkier amines (R =n- andi-Bu), 15–25% at 1 mol dm–3N 3 , isca. twice that of thetrans compounds and the pentaammine. The results are interpreted in the classical conjugate base mechanism, and discussed in the context of current ideas about stereochemistry of base hydrolysis.Prof. C. R. Píriz Mac-Coll from Uruguay is a guest at the Free University of Amsterdam.  相似文献   

9.
Summary A convenient preparation of the 14-membered macrocyclic diamide 5,7-dioxo-1,4,8,11-tetraazacyclotetradecane (LH2) is described. The pK NH + values of the ligand are pK1 = 5.76 and pK2 = 9.63 at 25° and I = 0.1 mol dm–3 (KNO3). With metal ions able to ionise amide hydrogens, the ligand acts as a planar quadridentate, L2–. Thus copper(II) and nickel(II) give the neutral complexes ML, and conductivity measurements confirm that they are nonelectrolytes in aqueous solution. Both the nickel(II) and copper(II) complexes are acid labile unlike the analogues of 1,4,8,11-tetraazacyclotetradecane (cyclam).The cobalt(III) complex [CoL(NH3)2]Cl has been characterised and1H n.m.r. measurements established the N-meso stereochemistry at the chiral nitrogen centres.  相似文献   

10.
Summary A variety ofmer-[Co(dien)(AA)X]+ (AA = amino acidate, dien = 1,5-diamino-3-azapentane) andmer-[Co(dien)(dipeptideOR)X]2+ complexes (X = Cl or NO2) have been prepared and characterised. Base hydrolysis of the peptide bond in the carbonyl bonded glycyl peptides has been studied at 25°C and I = 0.1 mol dm–3. The rate constants kOH for peptide bond hydrolysis fall within the 0.67–0.88 mol dm–3s–1 range. Base hydrolysis of the complexed peptide isca. 2×104 times faster than for the uncomplexed peptide ligand at 25 °C. The base hydrolysis of the chloro- and nitro-ligands in these complexes has also been studied. Very rapid hydrolysis occurs if the dien ligand adopts amer-configuration and the reactions are 102–104 times faster than for analogous complexes where the dien ligand adopts afac-configuration. These results are in agreement with Tobe's criteria for rapid base hydrolysis in cobalt(III) complexes.The following abbreviations are used thoughout this paper; dien 1,5-diamino-3-azapentane - dpt 1,7-diamino-4-azaheptane - glyO glycinate - glyOH glycine - glyOR glycine ester - glyNH2 glycine amide - glyglyO glycylglycinate - glyglyOR glycylglycine ester - glyglyglyOH triglycine - -alaO -alaninate  相似文献   

11.
Summary The kinetics of the first step of base hydrolysis oftrans-bis(Hmalonato)bis(ethylenediamine)cobalt(III) [malH=HO2CCH2CO 2 ] has been investigated in the 15–35° C range, I=0.3 mol dm–3 (NaClO4) and [OH]=0.015–0.29 mol dm–3. The rate law is given by –d In[complex]T/dt=k1[OH] and at 30° C, k1=8.5×10–3 dm3 mol–1s–1, H=117.0±7.0 kJ mol–1 and S=99.0±24.0 JK–1mol–1. The activation parameters data are consistent with the SN1 cb mechanism.  相似文献   

12.
A detailed investigation of the oxidation of L-ascorbic acid (H2A) by the title complex has been carried out using conventional spectrophotometry at 510 nm, over the ranges: 0.010 [ascorbate] T 0.045 mol dm–3, 3.62 pH 5.34, and 12.0 30.0 °C, 0.50 I 1.00 mol dm–3, and at ionic strength 0.60 mol dm–3 (NaClO4). The main reaction products are the bis(pyridine-2,6-dicarboxylate)cobaltate(II) ion and l-dehydroascorbic acid. The reaction rate is dependent on pH and the total ascorbate concentration in a complex manner, i.e., k obs = (k 1 K 1)[ascorbate] T /(K 1 + [H+]). The second order rate constant, k 1 [rate constant for the reaction of the cobalt(III) complex and HA] at 25.0 °C is 2.31 ± 0.13 mol–1 dm3 s–1. H = 30 ± 4 kJ mol–1 and S = –138 ± 13 J mol–1 K–1. K 1, the dissociation constant for H2A, was determined as 1.58 × 10–4 mol dm–3 at an ionic strength of 0.60 mol dm–3, while the self exchange rate constant, k 11 for the title complex, was determined as 1.28 × 10–5 dm3 mol–1 s–1. An outer-sphere electron transfer mechanism has been proposed.  相似文献   

13.
Summary The kinetics of the reaction of [Cu(TPT)(H2O)3]2+ and [Ni(TPT)(H2O)3]2+ with H2O have been followed and it has been shown that the formation of covalent hydrates is important in the understanding of these systems. The [Co(TPT)(OH)3] compound and its Ni analogue are attacked by HO initially to form pseudo-base species and in, the case of Ni , the ligand then hydrolyses to yield a compound related to the carboximate formed when HO reacts with [Cu(TPT)(OH)3]. In this reaction too, the formation of a pseudo-base, involving attack of HO at the triazine ring in the ligand is significant.Part XXI, ref. 2.  相似文献   

14.
Summary The kinetics of reaction of HO with [Ru(TPT)2]2+ and [Fe(TPT)2]2+ have been studied in detail. The former participates in an equilibrium with HO yielding a pseudo-base by attack at the ligand and, at very high concentrations of HO, dissociates to yield pure TPT quantitatively. [Fe(TPT)2]2+ dissociates rapidly in basic solution, even at 273 K, however, [Fe(TPT)(TPT · OH)]+ does in fact exist and the Fell and Rull reactions are quite similar, although that of Fell is much faster. The implications of these findings for the dissociation of [Fe(TPT)2]2+ over a wide range of pH are discussed.Patt XX, ref. 1.  相似文献   

15.
The kinetics of oxidation of [CoIINM(H2O)]3– (N = nitrilotriacetate, M = malonate) by N-bromosuccinimide (NBS) in aqueous solution have been found to obey the equation: d[CoIII]/dt = k 1 K 2[NBS][CoII]T/{1 + K2[NBS] + (H+/K1)} where k 1 is the rate constant for the electron transfer process, K 1 the equilibrium constant for dissociation of [CoIINM(H2O)]3– to [CoIINM(OH)]4– + H+, and K 2 the pre-equilibrium formation constant. Values of k 1 = 1.07 × 10–3 s–1, K 1 = 4.74 × 10–8 mol dm–3 and K 2 = 472 dm3 mol–1 have been obtained at 30 °C and I = 0.2 mol dm–3. The thermodynamic activation parameters have been calculated. The experimental rate law is consistent with a mechanism in which the deprotonated [CoIINM(OH)]4– is considered to be the most reactive species compared to its conjugate acid. It is assumed that electron transfer takes place via an inner-sphere mechanism.  相似文献   

16.
The complex species existing under voltammetric conditions (0.1 mol dm–3 LiCl) inDMF solutions of several iron(III) complexes with salicylaldehydeS-methylthiosemicarbazone (H2 L) have been identified by adding [FeCl4] and H+ and recording voltammograms at a glassy carbon electrode, both in stationary and rotating mode. By the action of Cl, a ligand release occurs, and the bis(ligand) cation [Fe(HL)2]+ is transformed into [Fe(HL)Cl3]. The same species is obtained in the reaction of [FeL 2] with [FeCl4]. Besides, the possibility has been demonstrated to obtain some complexes (and finally [FeCl4]) starting from a more basic type, by a careful addition of H+ generatedin situ from a Pd/H electrode. A practical application of the latter procedure could be the determination of the iron(III) content in such and similar compounds.
Die voltammetrische Identifizierung der Komplex-Spezies in DMF Lösungen von Eisen(III) Komplexen mit Salicylaldehyd-S-methylthiosemicarbazon
Zusammenfassung Die Spezies, die unter voltammetrischen Bedingungen (0.1 mol dm–3 LiCl) inDMF Lösungen einiger Eisen(III)-Komplexe mit Salizylaldehyd-S-methylthiosemicarbazon (H2 L) vorhanden sind, wurden durch Zusatz von [FeCl4] und H+ und Aufnahme von Voltammogrammen an der stationären und rotierenden Glaskohlenstoffelektrode identifiziert. Unter der Wirkung von Cl-Ionen kommt es zu einem Ligandenaustausch, wobei das bis(Ligand)-Kation [Fe(HL)2]+ in [Fe(HL)Cl3] übergeht. Die gleiche Substanz erhält man bei der Reaktion von [FeL 2] mit [FeCl4]. Ferner wird die Möglichkeit der Gewinnung einiger Komplexe (schließlich von [FeCl4]) ausgehend von der basischen Form durch stufenweise Zugabe von H+-Ionen, diein situ mit Hilfe einer Pd/H-Elektrode gebildet werden, beschrieben. Eine praktische Anwendung des letztgenannten Prozesses wäre die Bestimmung des Gehalts von Fe(III) in Lösungen der genannten und ähnlichen Komplexverbindungen.
  相似文献   

17.
Summary The kinetics of the exchange reaction between [Y(APTA)] and CuII have been investigated over a range of [H+] from 2.5×10–5 to 7.5×10–4 mol dm–3 at 30°C and ionic strength 0.2 mol dm–3 KNO3. The results show that the exchange reaction proceeds via both self-and proton-catalyzed dissociation of [Y(APTA)] and also by the direct attack of CuII on [Y(APTA)]. The corresponding rate constants kd, k h and kCu have been evaluated as 6.3s–1, 8.4×104 mol–1 dm3 s–1 and 416mol–3 dm3 s–1 respectively. The possible intermediates are discussed in terms of the structure of APTA. The complex-formation rate constants of YIII with APTA3- and HAPTA2- were also obtained.  相似文献   

18.
Summary The reactions of [Fe(bipyz)3]2+ (bipyz = 2,2-bipyrazine) and [Fe(box)3]2+ [box = 2,2-bis-(5,6-dihydro-4-H-1,3-oxazine] with H2O and HO in aqueous solution have been followed. The [Fe(bipyz)3]2+ ion is attacked at the ligand with both nucleophiles and the ligand is cleaved. A similar reaction between HO and [Fe(box)3]2+ is observed. Detailed kinetics for all reactions are reported.phen 1,10-phenanthroline - bipy 2,2-bipyridyl - bipym 2,2-bipyrimidine Part XXV: R. D. Gillard, W. S. Walters and P. A. Williams,J. Chem. Soc. Dalton Trans., in press.  相似文献   

19.
Summary Organochromium complexes, [CrRL(H2O)]2+] (L = 1,4,8,12-tetraazacyclopentadecane; R = 1°- or 2°-alkyl, or para-substituted benzyl), are oxidized to [CrRL(H2O)]3+, which rapidly decomposes (k 3 > 102 s–1) by homolysis of the Cr-C bond. Rate constants of the oxidation of these complexes by [IrCl6]2– range from 2.20 × 10–1 (R = Me) to 4.60 × 105 (R = 4-MeC6H4CH2)dm3 mol–1 s–1. A very negative reaction constant (–4.3) is found for the oxidation of para-substituted benzlchromium(III) complexes which, in conjunction with the results of product analysis, indicates a [CrIII/R.] type transition state.  相似文献   

20.
Summary The kinetics of formation and dissociation of the binuclear complex of Be2+ with 3-nitrosalicylatopentaamminecobalt(III) have been investigated in the 20–40 and 25–40 °C ranges (I = 0.3 mol dm –3), respectively. At 25 °C the rate and activation parameters for the formation of the binuclear species are: k f = 26.9 × 102 dm3mol–1s–1, H = 104 ± 7kJ mol–1 S = 91 ± 22JK–1mor–1.The rate constant, activation enthalpy and activation entropy for the acid-catalysed dissociation of the binuclear species are: 1.25 ± 0.08dm3mol –1 at 25 °C, 53 ± 3kJ mol–1 and - 67 ± 9 J K –1 mol–1, respectively. The formation of the binuclear species is chelation controlled while the dechelation is acid catalysed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号