首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S. Nasri  M. Megdiche  K. Guidara  M. Gargouri 《Ionics》2013,19(12):1921-1931
The KFeP2O7 compound was prepared by the conventional solid-state reaction. The sample was characterized by X-ray powder diffraction. The AC electrical conductivity and the dielectric relaxation properties of this compound have been investigated by means of impedance spectroscopy measurements over a wide range of frequencies and temperatures, 200 Hz–5 MHz and 553–699 K, respectively. Both impedance and modulus analysis exhibit the grain and grain boundary contribution to the electrical response of the sample. The temperature dependence of the bulk and grain boundary conductivity were found to obey the Arrhenius law with activation energies Eg?=?0.94 (3)?eV and Egb?=?0.89 (1)?eV. The grain-and-grain boundary conductivities at 573 K are 1.07?×?10?4 and 1.16?×?10?5?1 cm?1). The scaling behavior of the imaginary part of the complex impedance suggests that the relaxation describes the same mechanism at various temperatures. The near value of the activation energies obtained from the equivalent circuit, conductivity data, and analysis of M″ confirms that the transport is through ion hopping mechanism.  相似文献   

2.
The dielectric behavior of polymethyl methacrylate/multi-walled carbon nanocomposites (PMMA/MWCNTs) was investigated using impedance spectroscopy technique. The composites were prepared using melt mixing with MWCNTs loading ranging from 0.01 to 10 wt%. The experimental results showed that the measured impedance reflects the insulating behavior of the host material (PMMA) with no appreciable effects of the filler less than 8.5 wt%. However, for the sample containing 10 wt%, the calculated value of dc conductivity increases with increasing temperature from 2.0×10−6 (Ω m)−1 to attain a value of 4.8×10−6 (Ω m)−1 at 110 °C. The percolation threshold derived from the dielectric data was estimated to be higher than 8.5 wt% and lower than 10 wt%. A temperature dependent electrical relaxation phenomenon was only observed in the sample containing 10 wt% of MWCNTs. The frequency dependence of the ac conductivity data followed a power law.  相似文献   

3.
Guanghui Yuan  Jiming Xiang 《Ionics》2013,19(10):1449-1453
A novel sulfur/multiwalled carbon nanotube nanocomposite (S/MWCNT) was prepared by a facile quasi-emulsion template method in an O/W system. Transmission and scanning electronic microscopy show the formation of a highly developed core–shell tubular structure consisting of S/MWCNT composite with uniform sulfur coating on its surface. The homogenous dispersion and integration of MWCNT in the S/MWCNT composite create a highly conductive and mechanically flexible framework, enhancing the electronic conductivity and consequently the rate capability of the material. The S/MWCNT composite cathode could deliver a stable discharge (the fifth cycle) capacity of about 903 mAh g?1 at 0.1 C, 751 mAh g?1 at 0.5 C, and 631 mAh g?1 at 1 C.  相似文献   

4.
Linear viscoelastic properties and dielectric behavior of poly(1‐butene)/multiwalled carbon nanotube (MWCNT) nanocomposites were investigated. Dynamic mechanical analysis showed significant increase in storage modulus in the rubbery regime. The tan δ peak temperature remained constant; however, the peak intensity was lowered for the nanocomposites. In melt rheological studies the nanocomposites showed a shift in crossover frequency to the lower side, suggesting delayed relaxation of the molecular chains in the presence of MWCNT and this shift was found to depend on the content of MWCNT. The dielectric constant increased from 2.2 to 70 for the nanocomposite with 7 wt. % MWCNT. The electrical conductivity increased significantly, from 10?15 to 10?3 S/cm. The results of rheology and dielectric studies indicate that a percolation network is formed that is responsible for the observed changes.  相似文献   

5.
Das  Avirup  Thakur  A. K. 《Ionics》2017,23(10):2845-2853

Polymer nanocomposite has been proven to improve the property of polymer salt complex. Organo-modified clay and inorganic oxides are the most commonly used filler for polymer nanocomposite (PNC). However, single wall carbon nanotube (SWCNT)/multiwall carbon nanotube (MWCNT) are becoming popular filler for PNC for their high surface area and high mechanical stability. In this work, a series of PNC sample has been prepared by using polyethylene oxide (PEO)-polydimethylsiloxane (PDMS) blend as polymer matrix, an optimized salt stoichiometry of Ö/Li ~15, and surface-modified MWCNT as filler. The effect of ion-polymer and ion-MWCNT interaction in the polymer nanocomposite has been investigated by using XRD, SEM, FTIR, and electrical study. X-ray diffraction pattern confirms the dispersion of MWCNT inside the polymer chain and modifies the structural parameter of the polymer matrix. FTIR spectra indicate inclusion of MWCNT inside the polymer salt complex which changes the ion dissociation/association in the polymer host matrix. Further, the changes in structural, thermal, and electrical property of the polymer salt complex system have been studied by using SEM, DSC, and impedance analysis. Dc conductivity study shows that optimized PNC sample has conductivity of 8.04 × 10−5 S cm−1. This is almost two order enhancement from pure polymer salt system (10−6 S cm−1).

  相似文献   

6.
Solid polymer electrolytes based on potato starch (PS) and graphene oxide (GO) have been developed in this study. Blending GO with PS has improved the ionic conductivity and mechanical properties of the electrolytes. In this work, series of polymer blend consisting of PS and GO as co-host polymer were prepared using solution cast method. The most amorphous PS-GO blend was obtained using 80 wt% of PS and 20 wt% of GO as recorded by X-ray diffraction (XRD). Incorporation of 40 wt% lithium trifluoromethanesulfonate (LiCF3SO3) into the PS-GO blend increases the conductivity to (1.48 ± 0.35) × 10?5 S cm?1. Further enhancement of conductivity was made using 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]). The highest conductivity at room temperature is obtained for the electrolyte containing 30 wt% of [Bmim][Cl] with conductivity value of (4.8?0 ± 0.69) × 10?4 S cm?1. Analysis of the Fourier transform infrared spectroscopy (FTIR) spectra confirmed the interaction between LiCF3SO3, [Bmim][Cl], and PS-GO blend. The variation of the dielectric constant and modulus studies versus frequency indicates that system of PS-GO-LiCF3SO3-[Bmim][Cl] obeys non-Debye behavior.  相似文献   

7.
A. K. Nath  A. Kumar 《Ionics》2013,19(10):1393-1403
Ionic conductivity and transport properties of polyvinylidenefluoride–co-hexafluoropropylene– montmorillonite intercalated nanocomposite electrolytes based on ionic liquid 1-butyl-3-methylimidazolium bromide have been studied for various concentrations of montmorillonite clay. Ionic conductivity of the order of 10?3?S?cm?1 at room temperature with thermal stability up to about 235 °C has been obtained for the electrolyte system. The electrolyte system has superior properties at 5 wt% of clay loading with highly amorphous morphology as seen from selected area electron diffraction micrograph. Scanning electron microscope studies show that the electrolyte system has highly porous morphology and the ionic liquid is trapped in the pores. Dielectric properties of the electrolyte system have been studied to investigate the relaxation processes occurring in the system. Variation of real part of dielectric permittivity with frequency shows two relaxation processes occurring in the system, slow at low frequency and fast at high frequency. Kohlrausch exponential parameter has been calculated from modulus formalism, and the values show that the distribution of conductivity relaxation times becomes narrower with increasing clay loading.  相似文献   

8.
Hexanoyl chitosan soluble in THF is prepared by acyl modification of chitosan. Epoxidation natural rubber (ENR25) (25 mol%) is chosen to blend with hexanoyl chitosan. Films of hexanoyl chitosan/ENR25 blends containing lithium bis(trifluoromethanesulfonyl)imide (LiN(CF3SO2)2) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMImTFSI) are prepared by solution casting technique. FTIR results suggested that LiN(CF3SO2)2 salt interacted with hexanoyl chitosan, ENR25, and EMImTFSI. EMImTFSI interacted with hexanoyl chitosan and ENR25 to form EMIm+-hexanoyl chitosan and EMIm+-ENR25 complexes, respectively. The effect of EMImTFSI on the morphology and thermal properties of the blends is investigated by polarized optical microscopy (POM) and differential scanning calorimetry (DSC), respectively. The ionic conductivity of the electrolytes is measured by electrochemical impedance spectroscopy (EIS). Upon addition of 12 wt% EMImTFSI, a maximum conductivity of 1.3 × 10?6 S cm?1 is achieved. Methods based on impedance spectroscopy and FTIR are employed to study the transport properties of the prepared polymer electrolytes. The ac conductivity was found to obey universal law, σ(ω)?=?σ dc ?+? S . The temperature dependence of exponent s is interpreted by the small polaron hopping (SPH) model.  相似文献   

9.
Polymer nanocomposite electrolytes (PNCEs) of poly(ethylene oxide) and sodium perchlorate monohydrate complexes with montmorillonite (MMT) clay up to 20 wt.% MMT concentration of poly(ethylene oxide) (PEO) are synthesized by melt compounding technique at melting temperature of PEO (∼70 °C) and NaClO4 monohydrate (∼140 °C). Complex dielectric function, electric modulus, alternating current (ac) electrical conductivity, and impedance properties of these PNCEs films are investigated in the frequency range 20 Hz to 1 MHz at ambient temperature. The direct current conductivity of these materials was determined by fitting the frequency-dependent ac conductivity spectra to the Jonscher power law. The PNCEs films synthesized at melting temperature of NaClO4 monohydrate have conductivity values lower than that of synthesized at PEO melting temperature. The complex impedance plane plots of these PNCEs films have a semicircular arc in upper frequency region corresponding to the bulk material properties and are followed by a spike in the lower frequency range owing to the electrode polarization phenomena. Relaxation times of electrode polarization and ionic conduction relaxation processes are determined from the frequency values corresponding to peaks in loss tangent and electric modulus loss spectra, respectively. A correlation is observed between the ionic conductivity and dielectric relaxation processes in the investigated PNCEs materials of varying MMT clay concentration. The scaled ac conductivity spectra of these PNCEs materials also obey the ac universality law.  相似文献   

10.
Poly(ethylene oxide)(PEO)–poly(vinyl alcohol) (PVA) blend-based gel polymer electrolytes (GPEs) have been prepared by blending equal weights of PEO and PVA in ethylene carbonate (EC), dimethyl sulfoxide (DMSO), tetrabutylammonium iodide (TBAI), and iodine crystals (I2). The conductivity, diffusion coefficient, number density, and ion mobility of the electrolytes have been calculated from the impedance data obtained from electrochemical impedance spectroscopy (EIS) measurements. The GPE with the composition of 7.02 wt%, PVA, 7.02 wt% PEO, 30.11 wt% ethylene carbonate (EC), 30.11 wt% DMSO, 24.08 wt% TBAI and 1.66 wt% I2 exhibits the highest conductivity of 5.5 mS cm?1 at room temperature. Dye-sensitized solar cells (DSSCs) with configuration fluorine tin oxide (FTO)/titanium dioxide/N3-dye/GPE/platinum/FTO have been fabricated and tested under the white light of intensity 100 mW cm?2. The DSSC containing the highest conducting GPE exhibits the highest power conversion efficiency, η of 5.36 %.  相似文献   

11.
Polymer blended films of polyethylene oxide (PEO)?+?polyvinyl pyrrolidone (PVP):lithium perchlorate (LiClO4) embedded with silver (Ag) nanofiller in different concentrations have been synthesized by a solution casting method. The semi-crystalline nature of these polymer films has been confirmed from their X-ray diffraction (XRD) profiles. Fourier transform infrared spectroscopy (FTIR) and Raman analysis confirmed the complex formation of the polymer with dopant ions. Dispersed Ag nanofiller size evaluation study has been done using transmission electron microscopy (TEM) analysis. It was observed that the conductivity increases when increasing the Ag nanofiller concentration. On the addition of Ag nanofiller to the polyethylene oxide (PEO)?+?polyvinyl pyrrolidone (PVP):Li+ electrolyte system, it was found to result in the enhancement of ionic conductivity. The maximum ionic conductivity has been set up to be 1.14?×?10?5 S cm?1 at the optimized concentration of 4 wt% Ag nanofiller-embedded (45 wt%) polyethylene oxide (PEO)?+?(45 wt%) polyvinyl pyrrolidone (PVP):(10 wt%) Li+ polymer electrolyte nanocomposite at room temperature. Polyethylene oxide (PEO)?+?polyvinyl pyrrolidone (PVP):Li+ +Ag nanofiller (4 wt%) cell exhibited better performance in terms of cell parameters. This is ascribed to the presence of flexible matrix and high ionic conductivity. The applicability of the present 4 wt% Ag nanofiller-dispersed polyethylene oxide (PEO)?+?polyvinyl pyrrolidone (PVP):Li+ polymer electrolyte system could be suggested as a potential candidate for solid-state battery applications. Dielectric constants and dielectric loss behaviours have been studied.  相似文献   

12.
The polyvinylidene difluoride-co-hexafluoropropylene (PVdF-HFP) nanocomposite solid polymer electrolyte films were developed by solution-casting method. PVdF-HFP as a polymer host, lithium perchlorate (LiClO4) as a salt for lithium ion, and ZnO nanoparticles as fillers were used to form the nanocomposite solid polymer electrolyte films. All the prepared samples were characterized by X-ray diffraction (XRD), differential scanning calorimetry, and scanning electron microscopy. The XRD patterns of the pure and nanocomposite solid polymer electrolyte samples indicate the formation of amorphous phase with 17.5 wt.% of lithium salt and ZnO fillers up to 3 wt.%. The total conductivity and lithium ion transference number were studied at room temperature by using impedance spectroscopy and Wagner’s polarization methods. The highest conductivity at room temperature for solid polymer electrolyte and nanocomposite solid polymer electrolyte are found to be 3.208?×?10?4 and 1.043?×?10?3 S/cm, respectively. Similarly, the lithium ion transference number is evaluated for the optimized solid polymer electrolyte and nanocomposite solid polymer electrolyte films with 3 wt.% of ZnO fillers. And it is found that ionic transference number could be enhanced from 92 to 95 % with the addition of nanosized ZnO fillers to the solid polymer electrolyte.  相似文献   

13.
The ac impedance method has been used to investigate the conductivity of pressed HUP pellets. The activation energy for the ionic conduction process at high frequencies (30 kJ mol?1) was attributed to a simple proton hopping step. At lower frequencies (32 Hz) a Warburg diffusional impedance was observed with a much higher activation energy. This was attributed to the higher energy process of vacancy rotations needed for ion transfer over significant distances. Using a concentration cell, with HUP as the electrolyte, the thermodynamics of the hydrogen-tungsten oxide system was investigated.  相似文献   

14.
High aspect ratio multi-walled carbon nanotubes (MWCNTs) reinforced low density polyethylene (LDPE) composites were prepared by solvent casting followed by compression molding technique. Electromagnetic interference (EMI) shielding effectiveness (SE) of these composites was investigated in the frequency range of 12.4?C18 GHz (Ku-band) for the first time. The experimental results indicate that the EMI-SE of these composites is sensitive to the MWCNT loading. The average value of EMI-SE reaches 22.4 dB for 10 wt% MWCNT-LDPE composites, indicating the usefulness of this material for EMI shielding in the Ku-band. The main reason for improved SE has been attributed to significant improvement in the electrical conductivity of the composites by 20 orders of magnitude, i.e., from 10?20 for pure LDPE to 0.63 S/cm for MWCNT-LDPE, which is three order of magnitude higher than the previous reports for MWCNT-LDPE composites. Differential scanning calorimetry of the MWCNT-LDPE composites showed around 37% improvement in the crystalline contents over pure LDPE samples which resulted into enhanced thermal stability of the composites. The thermal decomposition temperature of LDPE is shifted by 40 °C on addition of 5 wt% MWCNT. The studies therefore show that these composite can be used as light weight, thermally stable EMI shielding, and antistatic material.  相似文献   

15.
Suh Cem Pang  Chen Lim Tay  Suk Fun Chin 《Ionics》2014,20(10):1455-1462
Starch-based gel electrolyte (SbGE) thin films were prepared by mixing native sago starch with different amounts of glycerol, and subsequently doped with various types of ionic salts. SbGE thin films showed substantially enhanced mechanical properties and ionic conductivity through incorporating optimal composition of native sago starch, glycerol, and ionic salts. A maximum room temperature ionic conductivity of the order of 10?3 S cm?1 was achieved for optimized SbGE thin film consisting of 80 wt% of native sago starch and 20 wt% of glycerol, and doped with 8 wt% of LiCl. SbGE thin films were characterized by Fourier transformed infrared spectrometry, scanning electron microscopy, and electrochemical impedance spectroscopy. Due to their favorable mechanical properties, high ionic conductivity at room temperature, ease of preparation, environmentally benign, and cheap, SbGE thin films show high potential utility as gel electrolyte materials for the fabrication of solid-state electrochemical devices.  相似文献   

16.
Plasticized polymer electrolytes comprising of ethylene carbonate as the plasticizing agent in poly (vinyl chloride) [PVC]–poly (butyl methacrylate) [PBMA] blended polymer electrolytes were prepared by solution casting technique. Complex formation, structural elucidation, conductivity, dielectric parameters (?′, ?″, M′, and M″), thermal stability, and surface morphology are brought out from FTIR, XRD, ac impedance analysis, dielectric studies, thermogravimetry/differential thermal analysis, and scanning electron microscopic studies, respectively. Polymer electrolytes are found to exhibit higher ionic conductivity at higher concentration of plasticizer at the cost of their mechanical stability. Conductivity of 1.879 × 10?4 S cm?1 is exhibited by the polymer electrolyte consisting of 69% of plasticizer with appreciable thermal stability up to 523 K. Temperature and frequency dependence of conductivity is found to follow Vogel Tammann Fulcher relation and Jonscher power law, respectively. Real and imaginary parts of dielectric constants are found to decrease with increase in frequency which could be due to the electrode polarization effect.  相似文献   

17.
The green revolution has led to the study of biopolymer for development of polymer electrolyte for electrochemical devices. Cellulose acetate, pectin, chitosan, and carrageenan are some of the biopolymers. Biopolymer-based membrane for proton conduction and lithium ion conduction have developed and characterized by different techniques. But the study of biopolymer based on Mg2+ ion is rare in literature. So, biopolymer based on I-carrageenan with magnesium has been studied. I-carrageenan biopolymer membrane with different concentration of magnesium perchlorate has been prepared by solution casting technique. Developed biopolymer membrane have been characterized by X-ray diffraction analysis (XRD), FTIR, differential scanning calorimetry (DSC), and AC impedance techniques. Pure I-carrageenan has shown a conductivity value of 5.90?×?10?5 S/cm. I-carrageenan membrane with 0.6 wt% of magnesium perchlorate has shown a conductivity of 2.18?×?10?3 S/cm. A primary Mg2+ ion battery has been constructed and its performance is studied. XRD has been undertaken to study the amorphous/crystalline nature of the sample. I-carrageenan with 0.6 wt% of magnesium membrane has shown highest amorphous nature. FTIR study confirms the complex formation between polymer and salt. AC impedance technique has been used to study the conductivity of the samples.  相似文献   

18.
Nano-composite polymer electrolytes containing poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP), ammonium tetrafluoroborate (NH4BF4), and nano-size fumed silica (SiO2) have been prepared and characterized by complex impedance spectroscopy. Ionic conductivity of polymer has been found to increase with the addition of NH4BF4, and a maximum conductivity of 3.62 × 10?6 S/cm has been obtained at 30 wt% NH4BF4. The formation of ion aggregates at high concentration of salt has been explained by Bjerrum’s law and mass action considerations. The conductivity of polymer electrolytes has been increased by three orders of magnitude (10?6 to 10?3 S/cm) with the addition of plasticizer, and a maximum conductivity of 1.10 × 10?3 S/cm has been observed at 80 wt% DMA. An increase in conductivity with the addition of nano-size fumed silica is attributed due to the formation of space-charge layers. A maximum conductivity of 7.20 × 10?3 S/cm has been observed for plasticized nano-composite polymer electrolytes at 3 wt% SiO2. X-ray diffraction analysis of polymer electrolyte system was also carried out. A small change in conductivity of nano-composite polymer electrolytes observed over the 30–130 °C temperature range and for a period of 30 days is also desirable for their use in various applications.  相似文献   

19.
《Current Applied Physics》2015,15(2):135-143
Solid polymer electrolytes consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend (50:50 wt/wt%) with lithium triflate (LiCF3SO3) as a dopant ionic salt at stoichiometric ratio [EO + (CO)]:Li+ = 9:1, poly(ethylene glycol) (PEG) as plasticizer (10 wt%) and montmorillonite (MMT) clay as nanofiller (3 wt%) have been prepared by solution cast followed by melt–pressing method. The X–ray diffraction study infers that the (PEO–PMMA)–LiCF3SO3 electrolyte is predominantly amorphous, but (PEO–PMMA)–LiCF3SO3–10 wt% PEG electrolyte has some PEO crystalline cluster, whereas (PEO–PMMA)–LiCF3SO3–10 wt% PEG–3 wt% MMT electrolyte is an amorphous with intercalated and exfoliated MMT structures. The complex dielectric function, ac electrical conductivity, electric modulus and impedance spectra of these electrolytes have been investigated over the frequency range 20 Hz to 1 MHz. These spectra have been analysed in terms of the contribution of electrode polarization phenomenon in the low frequency region and the dynamics of cations coordinated polymer chain segments in the high frequency region, and also their variation on the addition of PEG and MMT in the electrolytes. The temperature dependent dc ionic conductivity, dielectric relaxation time and dielectric strength of the plasticized nanocomposite electrolyte obey the Arrhenius behaviour. The mechanism of ions transportation and the dependence of ionic conductivity on the segmental motion of polymer chain, dielectric strength, and amorphicity of these electrolytes have been explored. The room temperature ionic conductivity values of the electrolytes are found ∼10−5 S cm−1, confirming their use in preparation of all-solid-state ion conducting devices.  相似文献   

20.
In order to enhance the ionic conductivity of polyethylene oxide (PEO)–KI(80:20) based alkaline polymer electrolytes, nanosized inorganic filler ZnS has been incorporated into PEO–KI matrix and the corresponding nanocomposite polymer electrolytes are synthesized by the usual solution casting procedure. Atomic force microscope image of composite polymer electrolyte exhibits that the introduction of ZnS nanoparticles changes the surface morphology and aggregates them to form an arborization pattern. The prepared nanocomposite polymer electrolyte reveals an ionic conductivity of about 10?4 S cm?1 for 5 wt% ZnS at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号