首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The cationic gemini surfactant 1,2-bis(N-tetradecyl-N,N-dimethylammonium)ethane dibromide (14-2-14) was synthesized using a previously described method. The surfactant was characterized using 1H NMR. The corrosion inhibition effect of 14-2-14 on mild steel in 1 M HCl at temperatures 30–60°C was studied using weight loss measurements, potentiodynamic polarization measurements and electrochemical impedance spectroscopy. Morphology of the corroded mild steel specimens was examined using scanning electron microscopy (SEM). The results of the studies show that gemini surfactant is an efficient inhibitor for mild steel corrosion in 1 M HCl; the maximum inhibition efficiency (IE) of 98.06% is observed at surfactant concentration of 100 ppm at 60°C. The %IE increases with the increasing inhibitor concentration and temperature. The adsorption of inhibitor on the mild steel surface obeys Langmuir adsorption isotherm. SEM studies confirmed smoother surface for inhibited mild steel specimen.  相似文献   

2.
The corrosion inhibition of mild steel in hydrochloric acid solution in the presence of three different molecular weights of polyvinyl alcohol (PVA) designated as PVA-I, PVA-II, and PVA-III corresponding to 14,000, 72,000, and 125,000 g mol?1, respectively, was investigated using electrochemical impedance spectroscopy, linear polarization resistance (LPR), and potentiodynamic polarization techniques at 25°C. It was found that PVA of different molecular weights inhibited the corrosion of mild steel in the acid environment. Inhibition efficiency (η%) increases with increase in concentration of the polymers. LPR measurements clearly show that inhibition efficiency increases with increasing molecular weight in the order PVA-III > PVA-II > PVA-I. Polarization curves indicate that PVA functions as a mixed inhibitor affecting both the anodic metal dissolution and cathodic hydrogen evolution partial reactions of the corrosion process. The experimental data obtained fitted well into Langmuir adsorption isotherm model. Physical adsorption mechanism is proposed from the thermodynamic (free energy of adsorption) parameters obtained.  相似文献   

3.
A 3,6,9,12,15,18,21-heptaoxatricosane-1,23-diyl bis(4-((4-(dimethylamino)benzylidene)amino)benzoate) was synthesized and characterized by spectroscopy analysis. The corrosion inhibition effect of the synthesized compound on carbon steel in hydrochloric acid solution had been investigated using potentiodynamic polarization, electrochemical impedance spectroscopy, and weight loss measurements. Polarization studies indicated that the compound acted as a mixed-type inhibitor. Impedance measurement showed that the charge transfer resistance (R ct) increased and double layer capacitance (C dl) decreased with the increase in the inhibitor's concentration. Adsorption of the inhibitor on the metal surface was found to obey Langmuir isotherm. Quantum chemical parameters were also calculated to characterize adsorption mechanism. Acceptable correlations were obtained between inhibition efficiency and the calculated quantum chemical parameters.  相似文献   

4.
The adsorption and corrosion inhibition behavior of mild steel in 0.1 M H2SO4 in presence of L-cystine and L-cystine in combination with surfactants sodium dodecyl sulfate and cetyltrimethyl ammonium bromide at 30–60°C was investigated using weight loss and potentiodynamic polarization measurements. Inhibition efficiency of L-cystine is synergistically enhanced on addition of surfactants. Surface morphology of corroded steel samples was evaluated using scanning electron microscopy and atomic force microscopy, which further confirmed the existence of an adsorbed protective film on the mild steel surface. Calculated thermodynamic parameters reveal that adsorption process is spontaneous and obey Langmuir adsorption isotherm.  相似文献   

5.
In this study, 5-naphthylazo-8-hydroxyquinoline (5NA8HQ) was synthesized, characterized, and tested as a corrosion inhibitor for mild steel in 1 M HCl solution in the temperature range 20 to 50 °C. Weight-loss and potentiodynamic polarization measurements were used to analyse the corrosion behaviour of the metal in the absence and presence of different concentrations of the inhibitor. Analyses of surface film and inhibited solutions by FT-IR and UV–visible spectroscopy enabled us to clarify aspects of the inhibition mechanism. Further examination using X-ray diffraction confirmed the action of 5NA8HQ as an effective inhibitor of corrosion of mild steel in acidic media. The results obtained showed that this compound was a good inhibitor of corrosion. The inhibition is of mixed anodic–cathodic nature with predominance of anodic character. The Langmuir isotherm was found to accurately describe the adsorption behaviour of 5NA8HQ. Spectrophotometric analysis showed the formation of a layer at the surface of the corroded sample; this was interpreted as formation of complexes between 5NA8HQ and metal cations present in the steel structure.  相似文献   

6.
A new corrosion inhibitor, namely 5-(2-hydroxyphenyl)-1,2,4-triazole-3-thione (5-HTT), has been synthesized and its influence on corrosion inhibition of mild steel in 5 % HCl solution has been studied using weight loss method and electrochemical measurements. Potentiodynamic polarization measurements clearly reveal that the investigated inhibitor is of mixed type, and it inhibits the corrosion of the steel by blocking the active site of the metal. Changes in impedance parameters were indicative of adsorption of 5-HTT on the metal surface, leading to the formation of protective films. The degree of the surface coverage of the adsorbed inhibitors was determined by weight loss measurements, and it was found that the adsorption of these inhibitors on the mild steel surface obeys the Langmuir adsorption isotherm. The effect of the temperature on the corrosion behavior with addition of 5 × 10?4 M of the inhibitor was studied in the temperature range 30–60 °C. The reactivity of this compound was analyzed through theoretical calculations based on density functional theory to explain the different efficiency of these compounds as a corrosion inhibitor.  相似文献   

7.
合成了一种新型咪唑啉化合物1-(2-氨基-硫脲乙基)-2-十五烷基-咪唑啉(IM-S),并通过失重法、电化学方法及扫描电镜等研究了IM-S在H2S/CO2共存条件下对Q235钢的缓蚀性能,探讨了其在Q235钢表面的吸附行为.结果显示,IM-S具有较好的抗H2S、CO2腐蚀能力,能同时抑制碳钢腐蚀的阴、阳极反应过程,最高缓蚀效率可达92.74%.缓蚀剂在Q235钢表面呈单分子层吸附,属于以化学吸附为主的混合吸附.最后采用量子化学方法对IM-S的缓蚀机理做了进一步分析.  相似文献   

8.
Adsorption and corrosion inhibition effect of gum acacia alone and in presence of surfactants sodium dodecyl benzene sulphonate and cetyltrimethyl ammonium bromide on mild steel in 0.1 M H2SO4 in temperature range of 30 to 60°C was investigated using weight loss method, chemical analysis of solution, scanning electron microscopy, atomic force microscopy and determination of thermodynamic parameters. Inhibiting action of gum acacia is synergistically enhanced on addition of small amount of surfactants. SEM and AFM results confirmed the existence of an adsorbed protective film on the mild steel surface. Thermodynamic parameters reveal that adsorption process is spontaneous and obey Freundlich adsorption isotherm.  相似文献   

9.
合成了新型席夫碱缓蚀剂:水杨醛缩氨基硫脲(ST),并考察了其在1 mol/L盐酸溶液中对碳钢的缓蚀性能。通过静态失重、动电位极化曲线、交流阻抗等技术手段研究缓蚀剂浓度对腐蚀速率及缓蚀效率的影响,阐明缓蚀作用机理。结果表明,ST在盐酸介质中对碳钢具有良好的缓蚀性能。随着缓蚀剂浓度的增加,缓蚀效率逐渐增大。ST的加入显著降低了自腐蚀电流密度,为抑制阴极反应为主的缓蚀剂。ST在碳钢表面的吸附符合Langmuir吸附模型,为物理吸附与化学吸附共同作用。  相似文献   

10.
Inhibitory action of safflower (Carthamus tinctorius) extract (SE) was investigated in hydrochloric acid solution through electrochemical (polarization, EIS), and surface analysis (optical microscopy/atomic force microscopy (AFM)/scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS)) techniques. In addition, Inhibition efficiency was predicted by neural network (NN) modeling in elevated temperatures and different acid concentrations. The thermodynamic adsorption parameters propose that this inhibitor retard both cathodic and anodic processes through physical adsorption and blocking the active corrosion sites. Surface analysis techniques confirm the inhibitor adsorption on the metal surface, which is in accordance with the variation of apparent activation energy of corrosion. Finally, inhibition efficiency is discussed in terms of protective film formation.  相似文献   

11.
The efficiency of chitosan (a naturally occurring polymer) as a corrosion inhibitor for mild steel in 0.1 M HCl was investigated by gravimetric, potentiodynamic polarization, electrochemical impedance spectroscopy measurements, scanning electron microscopy, and UV–visible analysis. The polymer was found to inhibit corrosion even at a very low concentration. Inhibition efficiency increases with a rise in temperature up to 96 % at 60 °C and then drops to 93 % at 70 °C, while it slightly increases with an increase in chitosan concentration. Polarization curves indicate that chitosan functions as a mixed inhibitor, affecting both cathodic and anodic partial reactions. Impedance results indicate that chitosan was adsorbed on the metal/solution interface. Adsorption of chitosan at the mild steel surface is found to be in agreement with Langmuir adsorption isotherm model. Chemical adsorption is the proposed mechanism for corrosion inhibition considering the trend of protection efficiency with temperature. Calculated kinetic and thermodynamic parameters corroborate the proposed mechanism.  相似文献   

12.
《印度化学会志》2021,98(6):100079
A new novel organic corrosion inhibitor N-[4-(1,3-benzo[d]thiazol-2-ylcarbamoyl)phenyl]quinoline-6-carboxamide (NBCPQC) has been synthesized. The synthesized novel organic inhibitor NBCPQC used to be carried out on mild steel corrosion in 1N HCl for the first time. The studied inhibitor was once evaluated as corrosion inhibitor for mild steel in 1N of HCl solution using electrochemical research which advocated that a protective film is form by the process of inhibitor absorption on the surface of mild steel. Inhibitor shows a better inhibiton efficiency of maximum above 90% in 1N HCl medium. Inhibitors show a better efficiency by way of reducing and sluggish down the corrosion process however on growing the temperature it is weakened on controlling corrosion. In addition to this adsorption isothermal models had been interpreted to fit the adsorption behaviour of the inhibitor compound on mild steel surface. Thus the result reveals that the compound shows a Langmuir adsorption isotherm.  相似文献   

13.
Imidazole derivatives, namely, 1-((1-(piperazinomethyl)-1H-benzoimidazol-2-yl)methyl)-2-phenylhydrazine (PBIP), and 1-((1-(morpholinomethyl)-1H-benzoimidazol-2-yl)methyl)-2-phenylhydrazine (MBIP) were synthesized and investigated as inhibitors for mild steel corrosion in 15% HCl solution using weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) techniques. It was found that the inhibition efficiency of both the inhibitors increases with increase in concentration of inhibitors and decreases with increase in temperature. The inhibitors, PBIP and MBIP, show corrosion inhibition efficiency of 92.6% and 91.4% at 300 ppm concentration, respectively, at 303 K. Polarization studies showed that both the studied inhibitors were of mixed type in nature. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were performed for surface study of uninhibited and inhibited mild steel samples. The semi-empirical AM1 method was employed for theoretical calculations.  相似文献   

14.
The inhibition of mild steel corrosion in aerated acid mixture of 0.5 N H2SO4 and 0.5 N HCl solution was investigated using potentiodynamic polarization studies, linear polarization studies, electrochemical impedance spectroscopy, adsorption, and surface morphological studies. The effect of inhibitor concentration on corrosion rate, degree of surface coverage, adsorption kinetics, and surface morphology is investigated. The inhibition efficiency increased markedly with increase in additive concentration. The presence of PEG and PVP decreases the double-layer capacitance and increases the charge-transfer resistance. The inhibitor molecules first adsorb on the metal surface following a Langmuir adsorption isotherm. Both PEG and PVP offer good inhibition properties for mild steel and act as mixed-type inhibitors. Surface analysis by scanning electron microscopy (SEM) and atomic force microscopy (AFM) shows that PVP offers better protection than PEG.  相似文献   

15.
N-(Pyridin-2-yl-carbamothioyl)benzamide (PCMB) was newly synthesized and tested as a corrosion inhibitor for C-steel in 0.5 M H2SO4 using chemical and electrochemical techniques. Polarization measurements showed that the synthesized compound acted as a mixed inhibitor. The inhibition efficiencies obtained from the different methods were in good agreement. The inhibitive action of this compound is discussed in terms of blocking the electrode surface by adsorption of the inhibitor according to the Langmuir isotherm. The effect of temperature on the corrosion behavior in the absence and presence of 2.5 × 10?5 M of PCMB was studied (283–308 K). The associated activation energies (E a) and the thermodynamic parameters (ΔH*, ΔS*, K ads, ΔG°ads) for the adsorption process were determined. The ΔG°ads value is ?36.55 kJ/mol, which indicated that the adsorption mechanism of PCMB on C-steel in 0.5 M H2SO4 solution was combined between physisorption and chemisorption processes.  相似文献   

16.
The corrosion inhibition of mild steel in 0.5 M H2SO4 solution by the extract of litchi peel (Litchi chinensis) was studied by weight loss method, potentiodynamics polarization and electrochemical impedance spectroscopy (EIS). The results show that the litchi peels extract acts as mixed-type inhibitor. The inhibition of corrosion is found to be due to adsorption of the extract on metal surface, which is in conformity with Langmuir’s adsorption isotherm. UV–Vis, Fourier transform infrared (FT-IR) spectroscopy and Scanning electron microscopy (SEM) studies confirm that the inhibition of corrosion of mild steel occurs through adsorption of the inhibitor molecules.  相似文献   

17.
The influence of the addition of poly(4-vinylpyridine-hexadecyl bromide) P4VP-Alkyl 50?% newly synthesized on the corrosion of mild steel in molar hydrochloric acid has been investigated by weight-loss measurements combined with linear potential scan voltammetry (I?CE) and electrochemical impedance spectroscopy (EIS). The polymer reduces the corrosion rate and the inhibition efficiency (E?%) of P4VP-Alkyl 50?% increases with its concentration and attains 95?% at 300?mg/L. E?% obtained from cathodic Tafel plots, EIS, and gravimetric methods were in good agreement. The inhibitor was adsorbed on the iron surface according to the Langmuir adsorption isotherm model. Polarization measurements also show that the compound acts as a cathodic inhibitor.  相似文献   

18.
The effect of novel synthesized three Schiff bases, namely, 1,3-bis[2-(2-hydroxy benzylidenamino) phenoxy] propane (P1), 1,3-bis[2-(5-chloro-2-hydroxybenzylidenamino) phenoxy] propane (P2), and 1,3-bis[2-(5-bromo-2-hydroxybenzylidenamino) phenoxy] propane (P3), on the corrosion of mild steel in 0.1 M HCl was investigated using potentiodynamic polarization and electrochemical impedance spectroscopy methods. Polarization measurements suggest that P1 acts as mixed type inhibitor while P2 and P3 behave as mainly cathodic inhibitors for acidic corrosion of steel. All electrochemical measurements show that inhibition efficiencies increase with increase in inhibitor concentration. This reveals that inhibitive actions of inhibitors were mainly due to adsorption on steel surface. Adsorption of these inhibitors follows Temkin adsorption isotherm. The correlation between the adsorption ability of inhibitors and their molecular structures has been investigated using quantum chemical parameters obtained by MNDO semi-empirical method. Calculated quantum chemical parameters indicate that Schiff bases adsorbed on steel surface by chemical mechanism.  相似文献   

19.
In the present investigation, a fresh water green algae spirogyra is used as an inexpensive and efficient mild steel corrosion inhibitor. The study is carried out in 0.5?M HCl solution using weight loss measurements, scanning electron microscopy–energy-dispersive X-ray spectroscopy, X-ray diffraction, and Fourier transforms infrared (FT-IR) techniques. The maximum inhibition efficiency was found to be 93.03% at 2?g?L?1. The adsorption of extract of spirogyra on mild steel surface obeys the Langmuir adsorption isotherm. Corrosion inhibition mechanisms were inferred from the temperature dependence of the inhibition efficiency as well as from calculation of thermodynamic and kinetic parameters which direct the process. FT-IR analysis of green algae spirogyra revealed the presence of hydroxyl, amino, and carbonyl groups, which are responsible for the adsorption on the mild steel surface. SEM analysis supported the inhibitive action of the spirogyra extract against the mild steel corrosion in acid solution.  相似文献   

20.
Abstract

The present study investigated the adsorption and inhibition behavior of leaf extract of Tephrosia Purpurea (T. purpurea) on mild steel corrosion in 1?N H2SO4 solution using electrochemical and surface morphological methods. Techniques adopted for electrochemical studies were Potentiodynamic Polarization and Electrochemical Impedance Spectroscopy (EIS) technique; and surface morphological studies were carried out using Scanning Electron Microscopy (SEM), and Atomic Force Microscopy (AFM). The leaf extract of T. purpurea was characterized using UV-Visible spectroscopy (UV-Vis), Fourier-Transform Infrared Spectroscopy (FT-IR), Nuclear Magnetic Resonance Spectroscopy (NMR) and Gas Chromatography – Mass Spectrometry (GCMS). The results obtained from electrochemical studies exhibited the potential of T. purpurea as good corrosion inhibitor. And, it was found that, the inhibition efficiency (I.E in %) increases with increase in concentration of the inhibitor molecules, the optimum inhibitor concentration observed was 300?ppm and the inhibition efficiency of 93% was observed at this inhibitor concentration. Above 300?ppm, there was not much changes in inhibition efficiency. Polarization studies provided the information that the inhibition is of mixed type and EIS confirmed that the corrosion process is controlled by single charge transfer mechanism. And, it was obtained that, the adsorption of inhibitor molecules obeys Langmuir adsorption isotherm. The inhibition is mainly by the adsorption of inhibitor molecules on the mild steel electrode surface, which was confirmed by FT-IR, SEM and AFM studies. Through all the experimental results, it can be arrived that, the leaf extract of T. purpurea performed as a good corrosion inhibitor for mild steel in 1?N sulfuric acid medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号