首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Switchable surfactants, particularly those triggered by CO2 used for switchable foam control, are relatively less documented. In this article, the foaming performance of 2-alkyl-1-hydroxyethylimidazolinium bicarbonate cationic surfactants (HEAIBs) was investigated for the first time. The foaming properties of these surfactants demonstrate that HEAIBs can generate foam with moderate stability, on demand, can be rapidly yet reversibly dissipated upon exposure to air. The results illustrated such a facile trigger, and the foam on/off transition would have huge potential to form a new class of stimuli-response foaming agents.   相似文献   

2.
CO2 flooding process has been a proven valuable method that could not only enhance oil recovery but also store greenhouse gas. However, CO2 source greatly restrict its application in China. In this article, based on the produced oil and gas of Jilin oilfield, slim tube tests were conducted to study the feasibility of the produced gas reinjection without separation. In addition, according to the phenomenon of the experiment, displacement process was divided into three stages. Chromatographic analysis was conducted to study the mechanism of production gas reinjection during CO2. Results indicate that components of the produced oil change along with CO2 content, displacement pressure and production stages.  相似文献   

3.
CO2 flooding is a win-win technology, sequestrating greenhouse CO2 while producing a significant amount of crude oil to help defray the cost of CO2 sequestrating and enhancing oil recovery. However, due to the difference of sedimentary environment and poor properties of formations, physical properties of the crude oil and the effect of CO2 flooding are not always satisfactory in most oilfields of China. Therefore, in this article, to improve the understanding of the oil recovery mechanisms and feasibility of CO2 flooding in China, based on the oil and gas of Mao-3 oilfields, phase behavior of the CO2 and crude oil system was investigated. Parameters like saturated pressure, volume factor, gas oil ratio, and viscosity were measured and their relationships analyzed. Results show that crude oil of Mao-3 reservoir and CO2 has good mutual dissolution under reservoir conditions, and CO2 could expand the oil and reduce the oil viscosity greatly. As a result, formation energy could be enhanced and flow characteristics of the oil could be improved by CO2 flooding.  相似文献   

4.
5.
6.
CO2-switchable oligomeric surfactants have good viscosity-reducing properties; however, the complex synthesis of surfactants limits their application. In this study, a CO2-switchable “pseudo”-tetrameric surfactant oleic acid (OA)/cyclic polyamine (cyclen) was prepared by simple mixing and subsequently used to reduce the viscosity of heavy oil. The surface activity of OA/cyclen was explored by a surface tensiometer and a potential for viscosity reduction was revealed. The CO2 switchability of OA/cyclen was investigated by alternately introducing CO2 and N2, and OA/cyclen was confirmed to exhibit a reversible CO2-switching performance. The emulsification and viscosity reduction analyses elucidated that a molar ratio of OA/cyclen of 4:1 formed the “pseudo”-tetrameric surfactants, and the emulsions of water and heavy oil with OA/cyclen have good stability and low viscosity and can be destabilized quickly by introducing CO2. The findings reported in this study reveal that it is feasible to prepare CO2-switchable pseudo-tetrameric surfactants with viscosity-reducing properties by simple mixing, thus providing a pathway for the emulsification and demulsification of heavy oil by using the CO2-switchable “pseudo”-oligomeric surfactants.  相似文献   

7.
In this article, the effects of various operating factors on the surface tension, viscosity, and stability of two heavy oil types in water emulsions for pipeline transportation are studied using the Taguchi experimental design approach. The surface tension of heavy crude oil-in-water emulsion is decreased by increasing the emulsifier concentration while the stability of emulsions is increased. The viscosity and stability are increased by an increase in oil content. An increase in the salinity and mixing speed leads to an increase in the stability of emulsion.  相似文献   

8.
Although surfactants and particles are often used together in stabilization of aqueous emulsions, the contribution of each species to such stabilization at the oil-water interface is poorly understood. The situation becomes more complicated if we consider the nonaqueous oil-oil interface, i.e, the stabilization of nonaqueous oil-in-oil (o/o) emulsions by solid particles and reactive surfactants which, to our knowledge, has not been studied before. We have prepared Pickering nonaqueous simple (o/o) emulsions stabilized by a combination of kaolinite particles and a nonionic polymerizable surfactant Noigen RN10 (polyoxyethylene alkylphenyl ether). Different pairs of immiscible oils were used which gave different emulsion stabilities. Using kaolinite with equal volumes of paraffin oil/formamide system gave no stable emulsions at all concentrations while the addition of Noigen RN10 enhanced the emulsion stability. In contrast, addition of Noigen RN10 surfactant to silicon oil-in-glycerin emulsions stabilized by kaolinite resulted in destabilization of the system at all concentrations. For all systems studied here, no phase inversion in simple emulsion was observed by altering the volume fraction of the dispersed phase as compared to the known water-based simple Pickering emulsions.   相似文献   

9.
Oligomeric surfactants display the novel properties of low surface activity, low critical micellar concentration and enhanced viscosity, but no CO2 switchable oligomeric surfactants have been developed so far. The introduction of CO2 can convert tertiary amine reversibly to quaternary ammonium salt, which causes switchable surface activity. In this study, epoxidized soybean oil was selected as a raw material to synthesize a CO2-responsive oligomeric surfactant. After addition and removal of CO2, the conductivity analyzing proves that the oligomeric surfactant had a good response to CO2 stimulation. The viscosity of the oligomeric surfactant solution increased obviously after sparging CO2, but returned to its initial low viscosity in the absence of CO2. This work is expected to open a new window for the study of bio-based CO2-stimulated oligomeric surfactants.  相似文献   

10.
The synthesis and use in enhanced oil recovery applications of a novel CO2-philic surfactant derived from maleic anhydride and 2-butyl-1-octanol is reported. The synthesis involved the esterification of maleic anhydride to produce diester followed by sulfonation of the esterified product. The esterification reaction parameters were optimized for the maximum yield of 98.4%. By employing a silica sulfuric acid catalyst, the reaction kinetics of esterification were also investigated. The activation energy was found to be 45.58 kJ/mol. The sulfonation reaction of the esterified product was performed by using sodium bisulfite, and a yield of 82% of surfactant was achieved. The synthesized surfactant lowered the interfacial tension between CO2/brine to 3.1 mN/m and effectively reduced the CO2 mobility. This surfactant has a great potential to be used for CO2 mobility control for CO2?EOR applications.   相似文献   

11.
The changes in global temperatures as a result of carbon dioxide (CO2) emissions has suggested that cumulative CO2 emissions will continue to increase over time. Many countries are looking for ways to reduce or alter the amount of CO2 harming our environment; therefore, this review is a compilation of CO2 adsorption on biomass-derived-biochar (BDB). This suggests that effective measures to mitigate the risk of dangerous climate change will need to limit cumulative emissions of CO2. Further, if cumulative CO2 emissions overshoot acceptable limits, it will become necessary to remove CO2 from the air, that is, the so-called “negative emissions.” In this review, we discuss the definitions and classes of technologies for capturing CO2 from the air and the application of biochar in the improvement of soil fertility. We also discuss the economic tradeoff between biochar and bio-oil, agricultural nutrient leaching, the novel magnetic property of biochar and its durability.  相似文献   

12.
13.
There have been few studies on the factors that determine the overall appearance of emulsions. Optical properties are quite important in determining the perceived quality of emulsion-based products. The overall appearance of an emulsion is determined by the way that it interacts with electromagnetic radiation in the visible region of the spectrum, for example, reflection, transmission, adsorption, and scattering. These interactions are principally determined by the characteristics of emulsion droplets (size, concentration, and refractive index). The present study aims at characterizing the optical properties and rheological behaviors of water-in-oil emulsions, especially macroemulsions. There is a decrease in the absorbance spectra as increasing glycerin ratio in aqueous phase because the difference of refractive index between oil phase and aqueous phase decreased, which improved the transparency of water-in-oil emulsion. The absorbance of linear and branched surfactant emulsions were smaller than that of alkyl modified branched surfactant emulsion. Moreover the transparency of emulsions prepared with linear and branched surfactants was much clearer than that of alkyl modified branched surfactant emulsion. The absorbance spectra also showed that low polar oil attributed to the more transparent emulsion, compared with high polar or nonpolar oil. However, these kinds of oils were not helpful to prepare transparent emulsion because the appearance of these emulsions was translucent or opaque, even if polyols in aqueous phase was 30 wt%.  相似文献   

14.
15.
16.
17.
18.
19.
20.
It was found that the interface tension between water and alkenyl succinic anhydride (ASA) was significantly reduced by polyaluminum sulfate (PAS), increased considerably though by TiO2 nanoparticle. PAS with basicity of 0.75 (PAS-0.75) reduced the interface tension to a larger extent than PAS with basicity of 0.3 (PAS-0.3). By reducing interface tension with PAS-0.75, ASA-in-water emulsion bearing fusiform geometries was constructed. The emulsion stabilized by PAS-0.3 and TiO2 nanoparticle bore spherical shapes with the exception when mass fraction of TiO2 nanoparticle was low, in which case fused nonspherical drops were formed. Forming nonspherical emulsion crucially depends on ASA-water interface tension, where a critical interface tension was identified to be 0.6–0.7 mN/m. The fusiform geometries were transformed into spherical shapes when interface tension was higher than 0.7 mN/m. Both the lowering mechanism of the interface tension and the formation mechanism of the fusiform emulsion were proposed.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号