首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Structure-activity relationships of 23 P450 2A5 and 2A6 inhibitors were analysed using the CoMFA [1] and GOLPE/GRID with smart region definition (SRD) [2]. The predictive power of the resulting models was validated using five compounds not belonging to the model set. All models have high internal and external predictive power and resulting 3D-QSAR models are supporting each other. Both Sybyl and GOLPE highlight properties near lactone moiety to be important for 2A5 and 2A6 inhibition. Another important feature for pIC50 was the size of the substituent in the 7-positon of coumarin. The models suggest that the 2A5 binding site is larger that that of 2A6 due to larger steric regions in the CoMFA coefficient maps and corresponding GOLPE maps. In addition, the maps reveal that 2A6 disfavours negative charge near the lactone moiety of coumarin.  相似文献   

3.
The performance of three "spectroscopic" quantitative structure-activity relationship (QSAR) methods (eigenvalue (EVA), electronic eigenvalue (EEVA), and comparative spectra analysis (CoSA)) for relating molecular structure and estrogenic activity are critically evaluated. The methods were tested with respect to the relative binding affinities (RBA) of a diverse set of 36 estrogens previously examined in detail by the comparative molecular field analysis method. The CoSA method with (13)C chemical shifts appears to provide a predictive QSAR model for this data set. EEVA (i.e., molecular orbital energy in this context) is a borderline case, whereas the performances of EVA (i.e., vibrational normal mode) and CoSA with (1)H shifts are substandard and only semiquantitative. The CoSA method with (13)C chemical shifts provides an alternative and supplement to conventional 3D QSAR methods for rationalizing and predicting the estrogenic activity of molecules. If CoSA is to be applied to large data sets, however, it is desirable that the chemical shifts are available from common databases or, alternatively, that they can be estimated with sufficient accuracy using fast prediction schemes. Calculations of NMR chemical shifts by quantum mechanical methods, as in this case study, seem to be too time-consuming at this moment, but the situation is changing rapidly. An inherent shortcoming common to all spectroscopic QSAR methods is that they cannot take the chirality of molecules into account, at least as formulated at present. Moreover, the symmetry of molecules may cause additional problems. There are three pairs of enantiomers and nine symmetric (C(2) or C(2)(v)) molecules present in the data set, so that the predictive ability of full 3D QSAR methods is expected to be better than that of spectroscopic methods. This is demonstrated with SOMFA (self-organizing molecular field analysis). In general, the use of external test sets with randomized data is encouraged as a validation tool in QSAR studies.  相似文献   

4.
5.
6.
CoMFA, CoMSIA and eigenvalue analysis (EVA) were performed to study the structural features of 61 diverse dibenzodioxepinone and dibenzodioxocinone analogues to probe cholesteryl ester transfer protein (CETP) inhibitory activity. Three methods yielded statistically significant models upon assessment of cross-validation, bootstrapping, and progressive scrambling. This was further validated by an external set of 13 derivatives. Our results demonstrate that three models have a good interpolation as well as extrapolation. The hydrophobic features were confirmed to contribute significantly to inhibitor potencies, while a pre-oriented hydrogen bond provided by the hydroxyl group at the 3-position indicated a good correlation with previous SAR, and a hydrogen bond acceptor may play a crucial role in CETP inhibition. These derived models may help us to gain a deeper understanding of the binding interaction of these lactone-based compounds and aid in the design of new potent compounds against CETP.  相似文献   

7.
A novel method for underdetermined regression problems, multicomponent self-organizing regression (MCSOR), has been recently introduced. Here, its performance is compared with partial least-squares (PLS), which is perhaps the most widely adopted multivariate method in chemometrics. A potpourri of models is presented, and MCSOR appears to provide highly predictive models that are comparable with or better than the corresponding PLS models in large internal (leave-one-out, LOO) and pseudo-external (leave-many-out, LMO) validation tests. The "blind" external predictive ability of MCSOR and PLS is demonstrated employing large melting point, factor Xa, log P and log S data sets. In a nutshell, MCSOR is fast, conceptually simple (employing multiple linear regression, MLR, as a statistical tool), and applicable to all kinds of multivariate problems with single Y-variable.  相似文献   

8.
A novel method for underdetermined regression problems, multicomponent self-organizing regression (MCSOR), has been recently introduced. Here, its performance is compared with partial least-squares (PLS), which is perhaps the most widely adopted multivariate method in chemometrics. A potpourri of models is presented, and MCSOR appears to provide highly predictive models that are comparable with or better than the corresponding PLS models in large internal (leave-one-out, LOO) and pseudo-external (leave-many-out, LMO) validation tests. The “blind” external predictive ability of MCSOR and PLS is demonstrated employing large melting point, factor Xa, log?P and log?S data sets. In a nutshell, MCSOR is fast, conceptually simple (employing multiple linear regression, MLR, as a statistical tool), and applicable to all kinds of multivariate problems with single Y-variable.  相似文献   

9.
10.
One of the major challenges in computational approaches to drug design is the accurate prediction of the binding affinity of novel biomolecules. In the present study an automated procedure which combines docking and 3D-QSAR methods was applied to several drug targets. The developed receptor-based 3D-QSAR methodology was tested on several sets of ligands for which the three-dimensional structure of the target protein has been solved – namely estrogen receptor, acetylcholine esterase and protein-tyrosine-phosphatase 1B. The molecular alignments of the studied ligands were determined using the docking program AutoDock and were compared with the X-ray structures of the corresponding protein-ligand complexes. The automatically generated protein-based ligand alignment obtained was subsequently taken as basis for a comparative field analysis applying the GRID/GOLPE approach. Using GRID interaction fields and applying variable selection procedures, highly predictive models were obtained. It is expected that concepts from receptor-based 3D QSAR will be valuable tools for the analysis of high-throughput screening as well as virtual screening data  相似文献   

11.
Many heterocyclic amines (HCA) present in cooked food exert a genotoxic activity when they are metabolised (N-oxidated) by the human cytochrome P450 1A2 (CYP1A2h). In order to rationalize the observed differences in activity of this enzyme on a series of 12 HCA, 3D-QSAR methods were applied on the basis of models of HCA–CYP1A2h complexes. The CYP1A2h enzyme model has been previously reported and was built by homology modeling based on cytochrome P450 BM3. The complexes were automatically generated applying the AUTODOCK software and refined using AMBER. A COMBINE analysis on the complexes identified the most important enzyme–ligand interactions that account for the differences in activity within the series. A GRID/GOLPE analysis was then performed on just the ligands, in the conformations and orientations found in the modeled complexes. The results from both methods were concordant and confirmed the advantages of incorporating structural information from series of ligand–receptor complexes into 3D-QSAR methodologies.  相似文献   

12.
Estrogens exert important physiological effects through the modulation of two human estrogen receptor (hER) subtypes, alpha (hERalpha) and beta (hERbeta). Because the levels and relative proportion of hERalpha and hERbeta differ significantly in different target cells, selective hER ligands could target specific tissues or pathways regulated by one receptor subtype without affecting the other. To understand the structural and chemical basis by which small molecule modulators are able to discriminate between the two subtypes, we have applied three-dimensional target-based approaches employing a series of potent hER-ligands. Comparative molecular field analysis (CoMFA) studies were applied to a data set of 81 hER modulators, for which binding affinity values were collected for both hERalpha and hERbeta. Significant statistical coefficients were obtained (hERalpha, q(2) = 0.76; hERbeta, q(2) = 0.70), indicating the internal consistency of the models. The generated models were validated using external test sets, and the predicted values were in good agreement with the experimental results. Five hER crystal structures were used in GRID/PCA investigations to generate molecular interaction fields (MIF) maps. hERalpha and hERbeta were separated using one factor. The resulting 3D information was integrated with the aim of revealing the most relevant structural features involved in hER subtype selectivity. The final QSAR and GRID/PCA models and the information gathered from 3D contour maps should be useful for the design of novel hER modulators with improved selectivity.  相似文献   

13.
3D-QSAR, Docking, Local Binding Energy (LBE) and GRID methods were integrated as a tool for predicting toxicity and studying mechanisms of action. The method was tested on a set of 73 allelochemical-like pesticides, for which acute toxicity (LD(50)) for the rat was available. 3D-QSAR gave a model with high predictive ability and the regression maps indicated the important toxic chemical substituents. Significant ligand-protein residue interactions and oxidation positions in the binding site were found by docking analysis using CYP1A2 homology modelling. The binding energies of the compounds and the important substituents (Local Binding Energy, LBE) were calculated in order to demonstrate quantitatively the substituent contributions in the metabolism and toxicity. The GRID examination identified the CYP1A2 binding pocket feature. Finally, a 3D-QSAR map was compared to the GRID map, showing good overlaps and confirming the important role of CYP1A2 in allelochemical-like compounds toxicity.  相似文献   

14.
A panel of 92 catechol-O-methyltransferase (COMT) inhibitors was used to examine the molecular interactions affecting their biological activity. COMT inhibitors are used as therapeutic agents in the treatment of Parkinson's disease, but there are limitations in the currently marketed compounds due to adverse side effects. This study combined molecular docking methods with three-dimensional structure-activity relationships (3D QSAR) to analyse possible interactions between COMT and its inhibitors, and to incite the design of new inhibitors. Comparative molecular field analysis (CoMFA) and GRID/GOLPE models were made by using bioactive conformations from docking experiments, which yielded q2 values of 0.594 and 0.636, respectively. The docking results, the COMT X-ray structure, and the 3D QSAR models are in agreement with each other. The models suggest that an interaction between the inhibitor's catechol oxygens and the Mg2+ ion in the COMT active site is important. Both hydrogen bonding with Lys144, Asn170 and Glu199, and hydrophobic contacts with Trp38, Pro174 and Leu198 influence inhibitor binding. Docking suggests that a large R1 substituent of the catechol ring can form hydrophobic contacts with side chains of Val173, Leu198, Met201 and Val203 on the COMT surface. Our models propose that increasing steric volume of e.g. the diethylamine tail of entacapone is favourable for COMT inhibitory activity.  相似文献   

15.
Interest in the inhibitors of type-B monoamine oxidase has grown in recent years, due to the evidence for multiple roles of one such agent (selegiline) in the pharmacological management of neurodegenerative disorders. A set of 130 reversible and selective inhibitors of MAO-B (including tetrazole, oxadiazolone, and oxadiazinone derivatives) were taken from the literature and subjected to a three-dimensional quantitative structure–activity relationship (3D-QSAR) study, using CoMFA and GOLPE procedures. The steric and lipophilic fields, alone and in combination, provided us with informative models and satisfactory predictions (q2=0.73). The validity of these models was checked against the 3D X-ray structure of human MAO-B. Flexible docking calculations, performed by using a new approach which took advantage from QXP and GRID computational tools, showed the diverse inhibitors to interact with MAO-B in a similar binding mode, irrespective of the heterocycle characterizing them. A significant trend of correlation was observed between estimated energies of the complexes and the experimental inhibition data.  相似文献   

16.
17.
The possibility of improving the predictive ability of comparative molecular field analysis (CoMFA) by settings optimization has been evaluated to show that CoMFA predictive ability can be improved. Ten different CoMFA settings are evaluated, producing a total of 6120 models. This method has been applied to nine different data sets, including the widely used benchmark steroid data set, as well as eight other data sets proposed as QSAR benchmarking data sets by Sutherland et al. (J. Med. Chem. 2004, 47, 5541-5554). All data sets have been studied using training and test sets to allow for both internal (q(2)) and external (r(2)(pred)) predictive ability assessment. CoMFA settings optimization was successful in developing models with improved q(2) and r(2)(pred) as compared to default CoMFA modeling. Optimized CoMFA is compared with comparative molecular similarity indices analysis (CoMSIA) and holographic quantitative structure-activity relationship (HQSAR) models and found to consistently produce models with improved or equivalent q(2) and r(2)(pred). The ability of settings optimization to improve model predictive ability has been validated using both internal and external predictions, and the risk of chance correlation has been evaluated using response variable randomization tests.  相似文献   

18.
Three-dimensional quantitative structure–activity relationship (3D-QSAR) modelling was conducted on a series of leucine-rich repeat kinase 2 (LRRK2) antagonists using CoMFA and CoMSIA methods. The data set, which consisted of 37 molecules, was divided into training and test subsets by using a hierarchical clustering method. Both CoMFA and CoMSIA models were derived using a training set on the basis of the common substructure-based alignment. The optimum PLS model built by CoMFA and CoMSIA provided satisfactory statistical results (q2 = 0.589 and r2 = 0.927 and q2 = 0.473 and r2 = 0.802, respectively). The external predictive ability of the models was evaluated by using seven compounds. Moreover, an external evaluation set with known experimental data was used to evaluate the external predictive ability of the porposed models. The statistical parameters indicated that CoMFA (after region focusing) has high predictive ability in comparison with standard CoMFA and CoMSIA models. Molecular docking was also performed on the most active compound to investigate the existence of interactions between the most active inhibitor and the LRRK2 receptor. Based on the obtained results and CoMFA contour maps, some features were introduced to provide useful insights for designing novel and potent LRRK2 inhibitors.  相似文献   

19.
用CoMFA和HQSAR两种QSAR方法研究了50个乙内酰脲类分子的定量构效关系.本研究从构象搜索所得的低能结构出发构建化合物分子的构象, 建立CoMFA模型,并进行了全空间搜索. HQSAR本质上是一种二维的QSAR方法,与CoMFA方法相比,该方法在数据处理方面,比CoMFA方法快捷,并且可重复性好.两种方法均得到了较好分析结果, CoMFA的交叉验证相关系数q2 值为0.815, HQSAR的q2值为0.893.这些方程有力地说明了该类分子在(R,R)-N-3,5-dinitrobenzoyl-1,2-diamine型手性固定相上拆分过程中的影响因素,对今后类似拆分的实验研究提供了理论支持.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号