首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 865 毫秒
1.
Eu3+ and Sm3+ activated M2SiO4 (M=Ba, Sr and Ca) red-emitting phosphors were synthesized by a solid state reaction. The results of XRD and SEM measurements show that the samples are single phase and have irregular shape. The excitation and emission spectra indicate that these phosphors were effectively excited by ultraviolet (395 nm) and blue (466 nm) light and exhibited red performance. The charge compensator R+ (R+=Li+, Na+ and K+) injecting into the host efficiently enhanced the luminescence intensity of the M2SiO4: Eu3+ and M2SiO4: Sm3+ phosphors. The emission intensity of M2SiO4: Eu3+ and Sm3+ doping Li+ were higher than that of Na+ or K+.  相似文献   

2.
Sr2SiO4:Eu3+ and Sr2SiO4:Eu3+ doped with R+(R+=Li+, Na+ and K+) phosphors were prepared by conventional solid-state reaction and investigated by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and photoluminescence spectroscopy. XRD patterns and SEM reveal that the optimal firing condition for Sr2SiO4:Eu3+ was 1300 °C for 4 h. The excitation and emission spectra indicate that the phosphor can be effectively excited by ultraviolet (395 nm) and blue (466 nm) light and emits intense red light peaked at around 614 nm corresponding to the 5D07F2 transitions of Eu3+. In the research work, the effect of R+ contents on luminescence property and the Eu3+ concentration quenching process have also been investigated. The Eu3+ concentration quenching mechanism was verified to be a multipole-multipole interaction and the critical energy-transfer distance was calculated to be around 14.6 Å. The dopant R+(R+=Li+, Na+ and K+) as charge compensator in Sr2SiO4:Eu3+ can further enhance luminescence intensity, and the emission intensity of Sr2SiO4:Eu3+ doping Li+ is higher than that of Na+ or K+.  相似文献   

3.
Abstract

Salts of the [Eu(2,6-pyridinedicarboxylate)3]3- complex anion and various monovalent inorganic and organic counterions (Li+, Na+, K+, Rb+, Cs+, NH4 +, and pyridinium+) have been synthesized and studied by emission spectroscopy. The Eu3+ ion emission spectra exhibited by these salts have been observed with high resolution (less than 1.0 cm?1) and at low temperature (77 K). The emission spectra of these compounds indicate that changing the attached counterion does not affect the site symmetry observed by the europium ion beyond slight distortions indicated by small shifts in the energies of the Eu3+ electronic levels.  相似文献   

4.
LiCaBO3:M (M=Eu3+, Sm3+, Tb3+, Ce3+, Dy3+) phosphors were synthesized by a normal solid-state reaction using CaCO3, H3BO3, Li2CO3, Na2CO3, K2CO3, Eu2O3, Sm2O3, Tb4O7, CeO2 and Dy2O3 as starting materials. The emission and excitation spectra were measured by a SHIMADZU RF-540 UV spectrophotometer. And the results show that these phosphors can be excited effectively by near-ultraviolet light-emitting diodes (UVLED), and emit red, green and blue light. Consequently, these phosphors are promising phosphors for white light-emitting diodes (LEDs). Under the condition of doping charge compensation Li+, Na+ and K+, the luminescence intensities of these phosphors were increased.  相似文献   

5.
In this article, Sr2CeO4:x mol% Eu3+ and Sr2CeO4:5 mol%Eu3+, 3 mol% Dy3+ phosphors were synthesized from assembling hybrid precursors by wet chemical method. As-prepared samples present uniform grain-like morphology and the particle size is about 0.2 μm. The luminescence spectra of Sr2CeO4:x mol% Eu3+ have been measured to examine the influence of the intensity of red emission lines for Eu3+ on the concentration of Eu3+, showing that the intensity of the red emission increases with an increase of the concentration from 1 to 5 mol%. Additionally, from the emission spectra of Sr2CeO4:5 mol%Eu3+, 3 mol% Dy3+ phosphors, the characteristic lines of Dy3+ have also been observed. This result indicates that there also exists an energy transfer process between Sr2CeO4 and Dy3+.  相似文献   

6.
By charge compensating, a series of red-emitting phosphors Ca0.54Sr0.16Ca0.54Sr0.31Eu0.08Sm0.02(MoO4)0.6(WO4)0.4 were synthesized. Two approaches to charge compensation were used: (a) 2Ca2+/Sr2+Eu 3+/Sm3++M +, where M+ is a monovalent cation like Li+, Na+ or K+; (b) Ca2+/Sr2+Eu 3+/Sm3++N ?, where N+ is a monovalent anion like F?, Cl?, Br?, or I?. One red LED was made by combining the phosphor and 390–405 nm emitting LED chip under 20 mA forward-bias current, the color purity, chromaticity coordinates and the luminous intensity of which were 99.5%, x=0.66, y=0.33, 5600 mcd, respectively.  相似文献   

7.
The red-emitting Ca0.54Sr0.16Eu0.08Gd0.12(MoO4)0.2(WO4)0.8 phosphor is improved in the emission charateristics by charge compensation, of which chromaticity coordinates (CIE) are x=0.66 and y=0.33. Three approaches to charge compensation are investigated, namely (a) 3Ca2+/Sr2+→2Eu3+/Gd3++vacancy, (b) 2Ca2+/Sr2+→Eu3+/Gd3++M+(M+ is a monovalent cation like Li+, Na+ and K+ employed as a charge compensator) and (c) Ca2+/Sr2+→Eu3+/Gd3++N (N is a monovalent anion like F, Cl, Br and I employed as charge compensation ions). Through photoluminescent spectra analyzing the radiative and non-radiative relaxation mechanisms of luminescent system are obtained. Under 20 mA forward-bias current, one red-emitting LED is made by combining 390-405 nm-emitting LED chip and the phosphor. The red-emitting phosphor has broad prospects in LED application field.  相似文献   

8.
Samples of SrAl2O4:Eu3+ doped with B3+ and SrAl2O4:Eu3+ co-doped with B3+ and Li+ have been prepared by the solid-reaction method. The influence of B3+ and Li+ contents on luminescence property has been investigated. It is found that the substitution of B3+ for Al3+ greatly improves red emission intensity at 591, 615 and 701 nm. The dopant Li+ as charge compensator in SrAl2O4:Eu3+, B3+ can further enhance luminescence intensity. The strongest red emission is obtained in the Sr(Al1.9, B0.1)O4:Eu0.023+, Li+0.02 sample. The developed phosphors can be efficiently excited by ultraviolet (UV) light from 350 to 480 nm, which indicates that B3+ and Li+ co-doped SrAl2O4:Eu3+ is a good candidate phosphor applied in solid-state lighting in conjunction with white UV light-emitting diodes (LEDs).  相似文献   

9.
Eu3+-doped ZrO2 phosphors with different charge compensators (Li+, Na+, K+) were prepared by the sol-gel method. The properties of the as-obtained samples are characterized by X-ray diffraction, scanning electron microscope, photoluminescence spectra, and decay curve. The results show that ZrO2:Eu3+ phosphors with different charge compensation are mixed phase of tetragonal and monoclinic phase, and the volume fraction of tetragonal phase of ZrO2:Eu3+/Na+ phosphor is bigger than the other phosphors. The phosphors can emit strong red light at 606~616 nm (5D07F2) excited by ultraviolet light (395 nm). Compared with two charge compensation patterns in the ZrO2:Eu3+, it has been found that ZrO2:Eu3+ phosphors used Na+ as charge compensator show greatly enhanced red emission under 395 nm excitation and longer luminescence lifetime.  相似文献   

10.
In this study, the phosphors (Sr1−x , Zn x )0.9(Al2−y , B y )O4 doped 10 mol % Eu2+, were prepared by combustion method as the fluorescent material for white light emitting diodes (WLEDs), performing as a light source. The luminescent properties were investigated by changing the combustion temperature, the boron concentration, and the ratio of Sr to Zn. The luminescence, crystallinity and particle morphology were investigated by using a luminescence spectrometer, X-ray diffractometer (XRD) and transmission electron microscopy (TEM), respectively. The highest intensity of Sr0.9(Al2−y , B y )O4: Eu0.12+ phosphor was achieved when the combustion temperature was 600° and the concentration of B3+ was 8 mol % of the aluminate. A new blue emission was observed when the high Zn concentration (x ⩾ 0.8), and this blue emission disappeared with the Zn concentration became lower than 0.8. The combustion method synthesized phosphor (Sr0.6, Zn0.4)0.9(Al1.92, B0.08)O4: Eu0.12+ showed 3.3 times improved emission intensity compared with that of the Sr0.9(Al1.92, B0.08)O4:Eu0.12+ phosphor under λ ex = 390 nm.   相似文献   

11.
Yb3+ and M+ monovalent alkali ions (M+ = Li+, Na+, K+)-co-doped CaF2 cubic laser crystals were grown by the micro-pulling-down method (μ-PD) under CF4 atmosphere. Structural and spectroscopic characterizations of Yb3+ in substitution of Ca2+ (absorption, emission and decay curves) were carried out to study the effect of M+ ions as charge compensators.  相似文献   

12.
The experimental infrared (IR) spectrum of composite wax powder was investigated. The frequency shifts of the C=C anti-symmetrical stretching mode were observed and the experimental cooperativity effect involving Na+···π interaction was suggested. In order to further reveal the nature of cooperativity effect, the interaction energies in Mn+···coronene···CH4 (Mn+ = Li+, Na+, K+, Be2+, Mg2+ or Ca2+) as the model systems of composite wax powder were calculated by using the B3LYP, M06-2X and MP2 methods with 6-311++G** basis set. The results show that the Mn+···π interactions were strengthened upon the formation of ternary complexes. Although the changes of absolute values of the interactions between CH4 and coronene were not obvious, the relative values were considerably significant upon the formation of ternary complexes. The cooperativity effect was perhaps the reason for the formation of notable advantage of composite wax powder upon the introduction of surfactant with cation into wax powder. Reduced density gradient and atoms-in-molecules analysis confirm the cooperativity effect in Mn+···coronene···CH4, and reveal the nature of the formation of the predominant advantage of composite wax powder.  相似文献   

13.
(Ca1 − x, Srx)Al2Si2O8:0.06Ce3+, M+ (M+ = Li+, Na+, K+) phosphors have been prepared by conventional solid-state reaction method. The structural and optical properties of the phosphors were characterized by X-ray diffraction (XRD) technique and spectrophotometer, respectively. A regular variation was found among the XRD patterns of (Ca1 − x, Srx)Al2Si2O8:0.06Ce3+ phosphors based on the changing of Sr content. With the increase of Sr content, the maximum of emission band presented slight blue shifts (~ 15 nm). The luminescence intensity of CaAl2Si2O8:0.06Ce3+ and SrAl2Si2O8:0.06Ce3+ were significantly enhanced when K+ and Li+ were incorporated, respectively.  相似文献   

14.
采用高温固相法制备了Ca2SiO4:Dy3+发光材料.在365nm紫外光激发下,测得Ca2SiO4:Dy3+材料的发射光谱为一多峰宽谱,主峰分别位于486nm,575nm和665nm处;监测575nm发射峰,测得材料的激发光谱为一多峰宽谱,主峰分别位于331nm,361nm,371nm,397nm,435nm,461nm和478nm处.研究了Dy3+掺杂浓度对Ca2SiO4:Dy3+材料发射光谱及发光强度的影响,结果显示,随Dy3+浓度的增大,黄、蓝发射峰强度比(Y/B)逐渐增大,利用Judd-Ofelt理论解释了其原因;随Dy3+浓度的增大,Ca2SiO4:Dy3+材料发光强度先增大,在Dy3+浓度为4 mol%时到达峰值,而后减小,根据Dexter理论其浓度猝灭机理为电偶极-电偶极相互作用.研究了电荷补偿剂Li+,Na+和K+对Ca2SiO4:Dy3+材料发射光谱的影响,结果显示,不同电荷补偿剂下,随电荷补偿剂掺杂浓度的增大,Ca2SiO4:Dy3+材料发射光谱强度的演化趋势相同,即Ca2SiO4:Dy3+材料发射峰强度先增大后减小,但不同电荷补偿剂下,材料发射峰强度最大处对应的补偿剂浓度不同,对应Li+,Na+和K+时,浓度分别为4mol%,4mol%和3mol%. 关键词: 白光LED 2SiO4:Dy3+')" href="#">Ca2SiO4:Dy3+ 发光特性 电荷补偿  相似文献   

15.
Photoluminescence studies of pure and Dy3+, Eu3+ doped Sr2CeO4 compounds are presented by oxalate precipitation method for solid state lighting. The prepared samples also characterized by XRD, SEM (EDS) and FTIR spectroscopy. The pure Sr2CeO4 compound displays a broad band in its emission spectrum when excited with 280 nm wavelength, which peaks centered at 488 nm, which is due to the energy transfer between the molecular orbital of the ligand and charge transfer state of the Ce4+ ions. Emission spectra of Sr2CeO4 with different concentration of Dy3+ ions under near UV radiation excitation, shows that intensity of luminescence spectra is found to be affected by Dy3+ ions, and it increases with adding some percentages of Dy3+ ions. The maximum doping concentration for quenching is found to be Dy3+?=?0.2 mol % to Sr2+ions. The observed broad spectrum from 400 to 560 nm is mainly due to CT transitions in Sr2CeO4 matrix and some fractional contribution of transitions between 4F9/26H15/2 of Dy3+ ions. Secondly the effect of Eu3+ doping at the Sr2+ site in Sr2CeO4, have been studied. The results obtained by doping Eu3+ concentrations (0.2 mol% to 1.5 mol%), the observed excitation and emission spectra reveal excellent energy transfer between Ce4+ and Eu3+. The phenomena of concentration quenching are explained on the basis of electron phonon coupling and multipolar interaction. This energy transfer generates white light with a color tuning from blue to red, the tuning being dependent on the Eu3+ concentration. The results establish that the compound Sr2CeO4 with Eu3+?=?1 mol% is an efficient “single host lattice” for the generation of white lights under near UV-LED and blue LED irradiation. The commission internationale de I’Eclairage (CIE) coordinates were calculated by Spectrophotometric method using the spectral energy distribution of prepared phosphors.  相似文献   

16.
The temperature dependence of emission spectra of alkaline earth ortho-silicates M2SiO4 (M=Ca, Sr, Ba) doped with Eu2+ ions is investigated. Two emission bands of Sr2SiO4:Eu2+ show the normal redshift with broadening bandwidth and decreasing emission intensity as an increase in temperature. On the other hand, emission bands of Ca2SiO4:Eu2+ and Ba2SiO4:Eu2+ show the anomalous blueshift with increasing temperature. For Ca2SiO4:Eu2+ and Ba2SiO4:Eu2+, the temperature dependence of the emission color can be described in terms of back tunneling from the excited state of low-energy emission band to the excited state of high-energy emission band in the configuration coordinate diagram. Our phosphors have a promising potential as phosphors for green or greenish white-light-emitting diode pumped by ultraviolet chip.  相似文献   

17.
Yb3+/Er3+ co-doped Zn2SiO4 ceramics are rapidly synthesized by the microwave radiation method. Green and red up-conversion emissions are observed in Zn2SiO4: Yb3+, Er3+ ceramics under 980 nm excitation. The influence of co-doped Li+ or Bi3+ ion on luminescence intensity for the phosphors has been investigated. At Li+ or Bi3+ doping concentration of 1 mol%, up-converted green emission can be increased by 6 times and 20 times, respectively. It is believed that co-doped Li+ or Bi3+ ion results in the local distortion of Er3+ in Zn2SiO4, increasing the intra-4f transitions of Er3+ ions. The local distortion is proved by spectral probing method with Eu3+.  相似文献   

18.
Eu2+ and Mn2+ singly doped and codoped Na(Sr,Ba)PO4 phosphors were synthesized, and their luminescent properties were investigated. A broad blue emission and a broad orange emission band were observed in Na(Sr,Ba)PO4:Eu2+, Mn2+ phosphor. The resonant-type energy transfer from Eu2+ to Mn2+ was demonstrated, and the energy transfer efficiency was also calculated according to their emission spectra. Based on the principle of energy transfer, the emission intensity ration of Eu2+ and Mn2+ could be appropriately tuned by adjusting the contents of activators. Due to the strong absorption in the 250–400 nm range, Na(Sr,Ba)PO4:Eu2+, Mn2+ phosphor could be used as a potential candidate for near-UV white light-emitting diodes (LEDs).  相似文献   

19.
We investigate upconversion emissions in alkali metal ions (Li+, Na+, and K+) and Er3+-codoped Y2O3 nanocrystals. By introducing Li+, upconversion intensity is significantly enhanced, while Na+ and K+ hardly have this influence. FT-IR data give evidence that the main mechanisms of the enhanced upconversion emission cannot be attributed to the decreased surface defects. EXAFS data and variations of enhanced upconversion intensities in different samples indicate that Li+ can occupy the interstitial sites in lattice and thus arouse large site asymmetry. In addition, locations in the samples and effects on the upconversion emission of Na+ and K+ are discussed.  相似文献   

20.
This paper reports the photoluminescence and afterglow of Sr2SiO4 doped with Eu2+ and Dy3+. Factors governing the formation of the monoclinic or orthorhombic phase of this ortho-silicate are described and the impact of the crystallographic modification on the luminescence and afterglow under UV and VUV excitation are discussed and insight in factors limiting the efficiency of this yellow afterglow material is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号