首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various contrast of topographic images depending on a state of a tip apex on Sn/Si(1 1 1)-(√3 × √3)R30° surface was investigated using a low temperature non-contact AFM. With the type A tip, the image of the ring-type Sn, composed of six Sn atoms surrounding substitutional Si defect, was observed when the frequency shift (∣Δf∣) was small (the tip-sample distance, Ztip-sample, was long), while the ring-type Sn was not observed and all the Sn atoms have the same contrast when ∣Δf∣ was large (Ztip-sample was short). On the other hand, with the type B tip, modified from the type A tip by the tip-sample contact, the image of the ring-type Sn atoms was not observed regardless of variation of Δf. It is the first experimental result on the low temperature NC-AFM observation in the Sn/Si(1 1 1) system, which depends on short-range chemical bonding force or electrostatic force acting between the tip and the sample surface. In addition, the substitutional Si defects on the surface were seen as a dim spot or were not seen, also depending on the tip state.  相似文献   

2.
The energy and perpendicular force of a Pt adatom on Pt (0 0 1) surface have been calculated by MAEAM. With increasing the distance of the adatom from the surface, the energy and force maps can be classified into four regions: repulsive region, transformed region, strongly attractive region and weakly attractive region. In repulsive region, the maximum (minimum) values of the energy and repulsive force appear on the top (hole) of the first layer atoms of Pt (0 0 1) surface due to stronger pair-potential interaction. In other regions, the energy and force maps are more complicated than those in repulsive region due to the effects of the many body interactions and nonspherical distribution of the electrons of the atoms in crystal. The most stable position is 0.1664 nm above the hole of the first layer atoms for a Pt adatom on Pt (0 0 1) surface.  相似文献   

3.
Direct wafer bonding between high-density-plasma chemical vapour deposited (HDP-CVD) oxide and thermal oxide (TO) has been investigated. HDP-CVD oxides, about 230 nm in thickness, were deposited on Si(0 0 1) control wafers and the wafers of interest that contain a thin strained silicon (sSi) layer on a so-called virtual substrate that is composed of relaxed SiGe (∼4 μm thick) on Si(0 0 1) wafers. The surfaces of the as-deposited HDP-CVD oxides on the Si control wafers were smooth with a root-mean-square (RMS) roughness of <1 nm, which is sufficiently smooth for direct wafer bonding. The surfaces of the sSi/SiGe/Si(0 0 1) substrates show an RMS roughness of >2 nm. After HDP-CVD oxide deposition on the sSi/SiGe/Si substrates, the RMS roughness of the oxide surfaces was also found to be the same, i.e., >2 nm. To use these wafers for direct bonding the RMS roughness had to be reduced below 1 nm, which was carried out using a chemo-mechanical polishing (CMP) step. After bonding the HDP-CVD oxides to thermally oxidized handle wafers, the bonded interfaces were mostly bubble- and void-free for the silicon control and the sSi/SiGe/Si(0 0 1) wafers. The bonded wafer pairs were then annealed at higher temperatures up to 800 °C and the bonded interfaces were still found to be almost bubble- and void-free. Thus, HDP-CVD oxide is quite suitable for direct wafer bonding and layer transfer of ultrathin sSi layers on oxidized Si wafers for the fabrication of novel sSOI substrates.  相似文献   

4.
Lattice-resolution images of single-crystal α-alumina (sapphire) (0 0 0 1) surfaces have been obtained using contact-mode AFM under ambient conditions. It was found that the hexagonal surface lattice has a periodicity of 0.47 ± 0.11 nm, which is identical to that reported previously when the same surface was imaged in water. Large lattice corrugations (as high as 1 nm) were observed, but were concluded to be imaging artifacts because of the strong friction which causes additional deflection of the cantilever. The additional deflection of the cantilever is registered by the detector of the optical beam-deflection AFM resulting in an overestimation of the height at each lattice point. Abrupt changes were also resolved in the topography including honeycomb patterns and a transition from 2D lattices to 1D parallel stripes, with scanning direction. These phenomena can be explained by the commensurate sliding between the tip and sapphire surface due to the strong contact force.  相似文献   

5.
Silver particles are dispersed on silicon by magnetron sputtering and post-annealing to investigate the catalytic effects of individual silver particles on wet etching of silicon surface. According to scanning electron microscopy, dispersed deep holes are present and the major etching direction is vertical to the surface of a Si(1 0 0) wafer or inclined to that on a Si(1 1 1) wafer. Our experiments indicate that the effect of the anisotropy of Si on directional etching is fundamental and the wafer resistivity and experimental process have important influence on the etching results. In addition, aggregation of silver particles and random horizontal etching on the surface of the wafer are caused by the local imbalance between the oxidant and HF. Our results enable better understanding of the catalytic effects of metal particles on silicon and are helpful to the preparation new silicon nanostructures.  相似文献   

6.
We report the first results from novel sub-Angstrom oscillation amplitude non-contact atomic force microscopy developed for lateral force gradient measurements. Quantitative lateral force gradients between a tungsten tip and Si(1 1 1)-(7 × 7) surface can be measured using this microscope. Simultaneous lateral force gradient and scanning tunnelling microscope images of single and multi atomic steps are obtained. In our measurement, tunnel current is used as feedback. The lateral stiffness contrast has been observed to be 2.5 N/m at single atomic step, in contrast to 13 N/m at multi atomic step on Si(1 1 1) surface. We also carried out a series of lateral stiffness-distance spectroscopy. We observed lateral stiffness-distance curves exhibit sharp increase in the stiffness as the sample is approached towards the surface. We usually observed positive stiffness and sometimes going into slightly negative region.  相似文献   

7.
Atomic resolution imaging of the Si(111) × R30°–Ag surface was investigated using a noncontact atomic force microscopy (NC-AFM) in ultrahigh vacuum. NC-AFM images showed three types of contrasts depending on the distance between an AFM tip and a sample surface. When the tip–sample distance was about 1–3 Å, the images showed the honeycomb arrangement with weak contrast. When the tip–sample distance was about 0–0.5 Å, the images showed the periodic structure composed of three bright spots with relatively strong contrast. On the other hand, the contrasts of images measured at the distance of 0.5–1 Å seemed to be composed of the above-mentioned two types of contrasts. By comparing the site of bright spots in the AFM images with honeycomb-chained trimer (HCT) model, we suggested the following models: when the tip is far from the sample surface, tip–sample interaction force contributing to imaging is dominated by physical bonding interaction such as Coulomb force and/or van der Waals (vdW) force between the tip apex Si atoms and Ag trimer on the sample surface. On the other hand, just before the contact, tip–sample interaction force contributing to imaging is dominated by chemical bonding such as the force due to hybridization between the dangling bond out of the tip apex Si atom and the orbit of Si–Ag covalent bond on the sample surface.  相似文献   

8.
This very paper is focusing on the preparation of porous nanostructures in n-type silicon (1 1 1) wafer by chemical etching technique in alkaline aqueous solutions of 5 M NaOH, 5 M K2CO3 and 5 M K3PO4, and particularly, on its ultraviolet-blue photoluminescence emission. The anodic chemical etched silicon wafer has been characterized by means of optical microscopy, scanning electron microscopy, fluorescence spectroscopy, atomic force microscopy and Fourier transform infrared spectroscopy. This very surface morphology characterization has been clearly shown - the effect of anodic-chemical-etching procedure processed in K2CO3 or K3PO4 was much vigorous than that processed in NaOH. The FTIR spectra indicate that the silicon oxide was formed on the surface of electrochemical etched n-Si (1 1 1) wafers, yet not on that of the pure chemical etched ones anyhow. And an intense ultraviolet-blue photoluminescence emission is observed, which then differs well from the silicon specimen etched in alkaline solution with no anodic potential applied. The proper photoluminescence mechanism is discussed, and hence there may be a belief that the intense ultraviolet-blue photoluminescence emission would be attributed to the silicon oxide coating formed on silicon wafer in anodic-chemical-etching process.  相似文献   

9.
We have studied frictional force between SiN tip and Si surface by using lateral force microscopy. The cantilever we have used has very low stiffness of 0.006 N/m, and the normal force acting on the surface was much lower than the attractive force such as van der Waals force. In this low normal force limit, it was found that the frictional force did not depend on the normal force. We suggest a calibration method to estimate the attractive force from the lateral force data in this limit. The estimated attractive force between Si sample and SiN tip with radius of 10 nm was 0.4 nN in flat region and 0.65 nN at the corner of a rectangular hole.  相似文献   

10.
Si nano-composites were precipitated on LiF crystals following ablation from Si targets with laser light at 157 nm. The LiF/Si interface was analyzed with scanning electron microscopy, atomic force microscopy and energy dispersive X-ray microanalysis. It was found that Si composites were strongly attached to LiF ionic sites to form inhomogeneous structures consisted of small isotropic crystals 0.1-1 μm long, rich in Si and fluorine, which eventually further agglomerate to form larger structures. The thickness of the LiF/Si interface was increased from 50 nm to 2 μm following laser irradiation at 157 nm, due to accelerated adsorption of Si in the LiF interface by VUV light.  相似文献   

11.
We prepared high quality Au(1 1 1) film on Si wafer through the spin coating and thermal decomposition of a gold ink, spin-coated-and-fired (SCAF) Au film. The X-ray measurements, XRD and pole-figure analysis, showed that the SCAF Au film has a (1 1 1) out-of-plane orientation with a random in-plane orientation. In order to confirm the chemical activity of the SCAF Au film, we demonstrate the formation of patterned structures with the film by using soft lithography technique. The chemical activities of this physically stable SCAF Au film to the alkanethiols were at least equivalent those of physically deposited the Au films. The possibility of the mass production of micro patterned structure with the SCAF Au film was also demonstrated over the wide region on Si wafer by the microcontact lithography. These suggest that the Au film will help the easy fabrication of various nanosized devices on Si wafer and other substrates.  相似文献   

12.
We have investigated the mechanical and magneto-transport properties of electron beam evaporated Co film on p-Si(1 0 0) substrate. Real time intrinsic stress measurement of the Co film, measured using a cantilever beam technique, shows the evolution of a large tensile stress with the growth of the film on the Si substrate. The analysis of stress reveals a columnar type Volmer–Weber growth which is also confirmed by the atomic force microscopy (AFM) measurements. The Co-film shows high positive (negative) magnetoresistance at all temperatures (below 10 K) on application of out-of-plane (in-plane) magnetic field.  相似文献   

13.
Si K-edge XAFS was used to characterize a stoichiometric SiC film prepared by pulsed KrF laser deposition. The film was deposited on a p-type Si(1 0 0) wafer at a substrate temperature of 250 °C in high vacuum with a laser fluence of ∼5 J/cm2. The results reveal that the film contains mainly a SiC phase with an amorphous structure in which the Si atoms are bonded to C atoms in its first shell similar to that of crystalline SiC powder but with significant disorder.  相似文献   

14.
Q. Liu 《Applied Surface Science》2008,254(21):7104-7108
Dispersive calcite (CaCO3) nano-particles with a primary particle size of about 100 nm and an average agglomerate size of about 2.8 μm were synthesized via carbonation in the presence of poly acrylic acid (PAA). The experimental results showed that PAA was liable to be adsorbed on the calcite surface, leading to the decrease of the agglomeration size from 8.7 μm to 2.8 μm and the zeta potential from −8.5 mV to −28.6 mV. The deformation and adsorption behaviors of PAA on the typical planes of calcite were studied by the molecular simulation method, using DISCOVER model and the COMPASS force field. The simulation results indicated that PAA was easy to be deformed and adsorbed on the calcite planes owing to mainly the coulomb interaction as well as the possible formation of CaO and hydrogen bonds between PAA and calcite. The adsorption tendency of PAA on the CaCO3 planes was as follows based on the values of the corresponding interaction energies: (2 0 2) > (1 1 6) > (1 1 3) > (0 1 8) > (1 1 0) > (1 0 4).  相似文献   

15.
We have deposited a 12 nm thick Ge layer on Si(1 0 0) held at 200 °C by thermal evaporation under high vacuum conditions. Upon subsequent thermal annealing in vacuum, self-assembled growth of nanostructural Ge islands on the Ge layer occurred. Atomic force microscopy (AFM) and grazing incidence small-angle X-ray scattering (GISAXS) were used to characterize such layers. GISAXS measurements evidenced the formation of cylinder shaped structures upon annealing at 700 °C, which was confirmed by AFM measurements with a very sharp tip. A Ge mass transport from the layer to the islands was inferred by X-ray reflectivity and an activation energy of 0.40 ± 0.10 eV for such a process was calculated.  相似文献   

16.
The frequency shift and frequency shift image of cantilever in AFM have been studied by numerical integration of the equation of motion of cantilever for silicon tip with rutile TiO2(0 0 1) surface in UHV conditions and by the Hamaker summation method for the tip-surface interaction forces. The effects of the excitation frequency at the cantilever base and the equilibrium position of the tip on the frequency shift have been calculated and the results showed the same phenomena as those measured, e.g., the frequency shift increased dramatically or rapidly before the contact point and was then almost level off after the contact point. The effects of scanning speed and the initial closest distance of tip to the contact point have been calculated at different excitation frequencies at the cantilever base and the results showed that proper frequency shift image could be obtained either by noncontact mode at the excitation frequency slightly less than the resonance frequency of free cantilever, or by tapping mode at the excitation frequency a few times smaller than the resonance frequency of free cantilever.  相似文献   

17.
Atomic oxygen resulting from the dissociation of O2 on Pd(1 1 1) at low coverage was studied in a variable temperature scanning tunneling microscope (STM) in the range from 30 to 210 K. Oxygen atoms, which typically appear as 30-40 pm deep depressions on Pd(1 1 1), occupy fcc hollow sites and form ordered p(2 × 2) islands upon annealing above 180 K. The mobility of the atoms diminishes rapidly below 180 K, with an approximate diffusion barrier of 0.4-0.5 eV. Oxygen atom pairs produced by thermal dissociation of O2 at 160 K occupy both fcc and hcp hollow sites. The atoms travel approximately 0.25 nm after dissociation, and the distribution of pairs is strongly influenced by the presence of subsurface impurities within the Pd sample. At much lower temperatures, the STM tip can dissociate oxygen molecules. Dissociation occurs at sample bias voltages exceeding approximately 0.1 V. Following tip-induced dissociation, the product atoms occupy only fcc hollow sites. Oxygen atoms can be manipulated via short range repulsive interactions with the STM tip.  相似文献   

18.
The Atomic Force Microscope (AFM) with the conducting cantilever has been used as a tool for controlled printing the well-defined shapes of conductive paths on the 6H-SiC(0 0 0 1) surface as well as paths connecting the shapes. For clean 6H-SiC(0 0 0 1) samples the metal-tip/sample contact is of the diode type. The conditions have been found (tip/sample voltage, current) for which the local morphology of the surface is modified during current flow between the tip and the sample. Such a modified surface shows quite a different conduction type of the tip/sample surface contact than that of the unmodified surface.  相似文献   

19.
The Au(1 0 0) surface structure in contact with 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4) has been observed using electrochemical atomic force microscopy (EC-AFM) under an electrochemically controlled potential. The AFM images, taken in EMImBF4 in the potential range from −0.6 to 0.2 V vs. Ag/Ag(I), shows a fourfold symmetry with the distance between protrusions of ≈0.30-0.32 nm. This structure agrees well with the ideal surface structure of Au(1 0 0)-(1 × 1) and it is very similar to that previously obtained in a sulfuric acid aqueous solution.  相似文献   

20.
Atomic force microscopes have become useful tools not only for observing surface morphology and nanostructure topography but also for fabrication of various nanostructures itself. In this paper, the application of AFM for fabrication of nanostructures by local anodic oxidation (LAO) of Si(1 0 0) and GaAs(1 0 0) surfaces is presented. A special attention is paid to finding relations between the size of oxide nanolines (height and half-width) and operational parameters as tip-sample voltage and tip writing speed. It was demonstrated that the formation of silicon oxide lines obeys the Cabrera-Mott theory, i.e. the height of the lines grow, linearly with tip-sample voltage and is inversely proportional to logarithm of tip writing speed. As for GaAs substrates, the oxide line height grows linearly with tip-sample voltage as well but LAO exhibits a certain deviation from this theory. It is shown that the selective chemical etching of Si or GaAs ultrathin films processed by LAO makes it possible to use these films as nanolithographic masks for further nanotechnologies, e.g. fabrication of metallic nanostructures by ion-beam bombardment. The ability to control LAO and tip motion can be utilized in fabrication of complex nanostructures finding their applications in nanoelectronic devices, nanophotonics and other high-tech areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号