首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Super paramagnetic ZnFe2O4 nanoparticles were prepared by a surfactant assisted (ethylamine) hydrothermal method along with heat treatment. The nanoparticles were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, high resolution scanning electron microscopy, Transmission electron microscopy, vibrating sample magnetometer and diffuse reflectance spectra technique. From the analyses, influence of calcination temperature on the structural, vibrational, morphological, magnetic and optical properties of ZnFe2O4 nanoparticles were investigated. The ZnFe2O4 nanoparticles with an average particle size of 17 nm showed high photocatalytic activity in the degradation of methylene blue (90 %). This work demonstrates that ZnFe2O4 can be used as a potential monocomponent in visible-light photocatalysis for the degradation of organic pollutants. Furthermore, the products were super paramagnetic and could be conveniently separated within 15 min and recycled by using simple magnet, which is very beneficial for the degradation of organic pollutants.  相似文献   

2.
We studied a rapid, sensitive and selective amperometric sensor for determination of hydrogen peroxide by electrodeposited Ag NPs on a modified glassy carbon electrode (GCE). The modified GCE was constructed through a step by step modification of magnetic chitosan functional composite (Fe3O4–CH) and high-dispersed silver nanoparticles on the surface. The resulted Ag@Fe3O4–CH was characterized by various analytical methods including Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, scanning electron microscopy and cyclic voltammetry. The proposed sensor employed Ag@Fe3O4–CH/GCE as the working electrode with a linear current response to the hydrogen peroxide concentration in a wide range from 0.01 to 400 µM with a low limit of detection (LOD = 0.0038 µM, S/N = 3). The proposed sensor showed superior reproductivity, sensitivity and selectivity for the detection of hydrogen peroxide in environmental and clinical samples.  相似文献   

3.
An improved sol gel coating of magnesium aluminate spinel (MgAl2O4) over flaky graphite was prepared by aluminium-sec-butoxide and magnesium nitrate. The mechanism of evolution of an extended thin film of spinel was investigated by Fourier transform infrared spectroscopy, differential thermal analysis, scanning electron microscopy and energy dispersive spectral analysis. Atomic force microscope and field emission scanning electron microscope studies were conducted to differentiate between the topography and microstructural characteristics of as-received and coated graphites. X-ray photoelectron spectroscopy was performed to substantiate the elemental composition of spinel film over graphite. Oxidation resistance and water-wettability of coated graphite were examined respectively by thermogravimetry analysis and moisture requirement during installation of a carbon containing refractory castable composition. Apparent porosity, bulk density and slag corrosion resistance of those castables were better than that documented in our previous work.  相似文献   

4.
The current research addressed synthesizing and studying photoluminescence studies of β-Si3N4 nanoparticles. The effect of MgO and Y2O3 as the typical additives on photoluminescence behaviour was evaluated. The β-Si3N4 with MgO and Y2O3 additive specimens were fabricated by a solid state technique (ball-milled method). The as-prepared products were characterized by X-ray diffraction technique, transmission electron microscopy, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy and Raman analysis. The results showed that after ball-milled process, hexagonal β-Si3N4 with MgO or Y2O3 as the additives with the size distribution of 45–50 nm was obtained. The optical properties of the as-synthesized product were also investigated by photoluminescence and diffuse reflection spectroscopy. The obtained results confirmed that employing MgO as an additive, in comparison to the Y2O3, could enhance emission properties in the synthesized silicon nitride nanoparticles. The obtained results also showed that MgO–Si3N4 pair acted as FRET system to enhance the emission intensity of β-Si3N4 nanoparticles.  相似文献   

5.
In the present paper a pure phase of the copper chromite spinel nanoparticles (CuCr2O4 SNPs) were synthesized via the sol–gel route using citric acid as a complexing agent. Then, the CuCr2O4 SNPs has been characterized by field emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). In the next step, with the addition of Cu–Cr–O nanoparticles (NPs), the effects of different parameters such as Cu–Cr–O particle size and the Cu/Cr molar ratios on the thermal behavior of Cu–Cr–O NPs + AP (ammonium perchlorate) mixtures were investigated. As such, the catalytic effect of the Cu–Cr–O NPs for thermal decomposition of AP was evaluated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). TGA/DSC results showed that the samples with different morphologies exhibited different catalytic activity in different stages of thermal decomposition of AP. Also, in the presence of Cu–Cr–O nanocatalysts, all of the exothermic peaks of AP shifted to a lower temperature, indicating the thermal decomposition of AP was enhanced. Moreover, the heat released (ΔH) in the presence of Cu–Cr–O nanocatalysts was increased to 1490 J g−1.  相似文献   

6.
The limited electrochemical stability and the flammability of the liquid electrolytes presently used in Li-ion batteries stimulates the search for alternatives including ceramic solid electrolytes. Moreover, solid electrolytes also fulfil crucial functions in various large-scale energy storage systems, e.g. as anode-protecting membranes in aqueous Li-air batteries. Here, the processing of the solid electrolytes Li7La3Zr2O12 is studied for applications in Li-air batteries. Molten salt method (MSM) was adopted previously on synthesis of simple oxides; to the best of our knowledge, we report for the first time the adaptation of the MSM to prepare this class of solid electrolytes. As a model compound, we prepared the garnet-related Li6.75La3Zr1.75Ta0.25O12. It has been prepared by using stoichiometric amounts of La2O3, ZrCl4, and Ta2O5 in excess 0.88 M LiNO3:0.12 M LiCl molten salt. Subsequently, samples were heated to various temperatures in the range 600–900 °C for 6 h in air in a recrystallized alumina crucible and finally washed with distilled water to remove excess salts. The obtained Li6.75La3Zr1.75Ta0.25O12 electrolyte powder was characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, Raman, and impedance spectroscopy as well as surface area measurements. The cubic single phase was obtained for samples prepared at temperatures ≥700 °C. The effects of washing with water or aqueous LiOH solution on the structure and conductivity of the phases will be discussed.  相似文献   

7.
Single-phase ZnAl2O4 nanoparticles with the spinel structure were successfully synthesized using a modified polyacrylamide gel method according to the atomic ratio of Zn to Al = 1: 1.8. The as-prepared samples were characterized by means of X-ray powder diffraction (XRD), thermogravimetric analysis (TG), differential scanning calorimetry analysis (DSC), field-emission scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and photoluminescence (PL) spectra. XRD patterns show that the pure phase of ZnAl2O4 is obtained after heating the xerogel at 900°C for 5 h in air. The SEM images reveal that the ZnAl2O4 nanoparticles have a narrow particle size distribution and the average particle size is around 45 nm. Photoluminescence (PL) spectra demonstrate the single phase ZnAl2O4 nanoparticles have an emission peak located at 469 nm when excited by 350 nm light. The phase structure, coordination mechanism, and luminescence properties have been discussed on the basis of the experimental results.  相似文献   

8.
The effect of thermal activation, sharp increase in the catalytic activity of the system MnO x -Al2O3 in reactions of deep oxidation of CO and hydrocarbons after calcination of the catalyst at 900–1000°C was discovered and investigated. With the use of X-ray phase analysis, X-ray electron spectroscopy, EXAFS, IR spectroscopy, electronic spectroscopy of diffuse reflections, electron microscopy etc. it was established that the effect of thermal activation is related to reversible phase transitions in the system at heating and cooling. On cooling from 1100°C to 650°C disperse particles of cubic spinel of composition Mn2.1 ? x · Al0.9 + x O4 are conserved on the corundum surface. On further cooling the spinel decomposes and finally the nanocristalline species of β-Mn3O*4 containing up to 15 at% of Al3+ form and govern the activity.The thermal activation effect was implemented in an industrial catalyst IK-12-40. Joint Stocks Co “KATALIZATOR” produced and supplied to customers hundreds of tons of this catalyst. The catalyst was awarded with a silver medal of the International exhibition EUREKA in Brussels (1995).  相似文献   

9.
Charge separation plays a key role in the conversion of solar energy into chemical energy for use in the redox reaction and as well as in the photocatalytic activity. In this study, SrTiO3 particles with different morphologies including irregular, tetrahexahedron, and cube were synthesized by an in situ solvothermal method. The photocatalytic activity of the synthesized nanoparticles was investigated in the photocatalytic decomposition of methylene blue under UV light irradiation. Tetrahexahedron SrTiO3 particles exhibited high decomposition activity (70 %), which is about two times higher than those of the irregular and cubic SrTiO3 particles. The high decomposition activity of tetrahexahedron SrTiO3 particles could be attributed to the improvement of charge separation achieved on different crystal facets. To reach a good charge separation, tetrahexahedron SrTiO3/TiO2 coupled nanoparticles were fabricated by impregnation method. Results showed that coupling tetrahexahedron SrTiO3 with TiO2 could produce efficient charge separation between tetrahexahedron SrTiO3 and TiO2 due to their matched band edges. In order to achieve better charge separation, the tetrahexahedron SrTiO3/90 %TiO2 sample was calcined at different temperatures in the 450–750 °C range. Tetrahexahedron SrTiO3/90 %TiO2 coupled nanoparticles calcined at 650 °C show high photocatalytic activity compared with other samples. The prepared samples were characterized by using various techniques such as X-ray diffraction, scanning electron microscopy, photoluminescence emission spectra, and UV–Vis diffuse reflectance spectroscopy.  相似文献   

10.
This paper reports on a novel processing route for producing ZrO2/GrO nanocomposites by solid-state thermal decomposition of zirconium acetate nanostructures and graphene as starting reagents, powders were carried out in the temperature 200 °C for 2 h. In addition, nanocomposites of ZrO2/GrO were obtained by solid-state thermal decomposition of the as-synthesized graphene oxide and Zr(CH3COO)2·4H2O. The as-synthesized products were characterized by X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy, atomic force microscope, photoluminescence spectroscopy and Thermogravimetric analysis. The sublimation process of the Zr(OAc)2 and GrO powder were carried out within the range of 210, 220 and 230 °C. The XRD studies indicated the production of pure ZrO2/GrO nanocomposites after thermal decomposition.  相似文献   

11.
Pure titania, zirconia, and mixed oxides (3–37 mol.% of ZrO2) are prepared using the sol-gel method and calcined at different temperatures. The calcined samples are characterized by Raman spectroscopy, X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption porosimetry. Measurements reveal a thermal stability of the titania anatase phase that slightly increases in the presence of 3–13 mol.% of zirconia. Practically, the titania anatase-rutile phase transformation is hindered during the temperature increase above 700°C. The mixed oxide with 37 mol.% of ZrO2 treated at 550°C shows a new single amorphous phase with a surface area of the nanoparticles double with respect to the other crystalline samples and the formed srilankite structure (at 700°C). The anatase phase is not observed in the sample containing 37 mol.% of ZrO2. The treatment at 700°C causes the formation of the srilankite (Ti0.63Zr0.37Ox) phase.  相似文献   

12.
By combining the advantages of manganese dioxide nanoparticles (MnO2 NPs) and carbon nanofibers (CNFs), a biosensing electrode surface as a high-performance enzyme biosensor is designed in this work. MnO2 NPs and CNFs nanocomposites (MnO2–CNFs) were prepared by using a simple hydrothermal method and then were characterized by scanning electron microscopy, powder X-ray diffraction, fourier transform infrared spectroscopy, energy dispersive spectrometry and electrochemisty. The results showed that MnO2 NPs are uniformly attached to the surface of CNFs. Meanwhile, the MnO2–CNFs nanocomposites as a supporting matrix can provide an efficient and advantageous platform for electrochemical sensing applications. On the basis of the improved sensitivity of MnO2–CNFs modified electrode toward H2O2 at low overpotential, a MnO2–CNFs based glucose biosensor was fabricated by monitoring H2O2 produced by an enzymatic reaction between glucose oxidase and glucose. The constructed biosensor exhibited a linear calibration graph for glucose in a concentration range of 0.08–4.6 mM and a low detection limit of 0.015 mM. In addition, the biosensor showed other excellent characteristics, such as high sensitivity and selectivity, short response time, and the relative low apparent Michaelis–Menten constant. Analysis of human urine spiked with glucose at different concentration levels yielded recoveries between 101.0 and 104.8%.  相似文献   

13.
Magnesium aluminate nanoparticles with different chromium concentration (0–12%) have been synthesized by a citrate–nitrate sol–gel route. X-ray diffraction studies confirmed the formation of single-phase cubic spinel structure excluding the presence of any secondary phase. Crystallite size of the synthesized nanoparticles was found to increase from 8.5 to 19.8 nm with the increase in Cr concentration. Fourier transformed infrared spectroscopic studies confirmed the presence of AlO6 group which led to the formation of MgAl2O4 spinel structure. Surface morphology of the sintered pellets was investigated with the help of a field emission scanning electron microscope which revealed the existence of both grain and grain boundary along with their aggregates. The dielectric constant, dielectric loss and ac conductivity were studied as a function of frequency of the applied electric field for different composition and their nature of variation with frequency has been elucidated on the basis of Maxwell–Wagner interfacial model. Impedance spectroscopy technique has been used to study the effect of grain and grain boundary on the electrical properties of this spinel oxide. All the electrical parameters showed strong dependence on the nanostructural properties and were found to vary consistently with the increase of doping concentration.  相似文献   

14.
Eu, Dy co-doped strontium aluminate nanophosphors were prepared by the combustion synthesis method. Their structure and morphology were investigated by X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy. According to the XRD and the TEM analysis, the average crystallite size was found to be in the nanometer range. The phase structure of the prepared nanophosphor is consistent with a standard monoclinic phase with a space group P21. The prepared SrAl2O4:Eu2+, Dy3+ nanophosphor emitted green light with a peak at 510 nm showing blue shift, which is due to the reduction in the particle size. Two distinct peaks were observed in the ML intensity versus time curve. The two peaks in ML indicate the presence of charge transfer in an ML process.  相似文献   

15.
CuCr2O4 spinel powders were synthesized starting from different chromium sources, namely (i) chromium oxide (α-Cr2O3) and (ii) ammonium dichromate ((NH4)2Cr2O7). The copper source was a Cu(II) carboxylate-type complex. The Cu(II) carboxylate complex was obtained by the redox reaction between Cu(NO3)2·3H2O and 1,3-propanediol (1,3PG) at 130 °C. In the first case (i), we have started from a mixture of α-Cr2O3, Cu(NO3)2·3H2O and 1,3PG that upon heating formed the copper malonate complex, which decomposed around 220 °C forming an oxide mixture (CuO + α-Cr2O3). In the second case (ii), (NH4)2Cr2O7, Cu(NO3)2·3H2O and 1,3PG were homogenously mixed. Heating this mixture at 130 °C resulted, in situ, in the Cu(II) complex. On controlled temperature increase, the violent decomposition of (NH4)2Cr2O7 took place at 180 °C along with the decomposition of the Cu(II) complex, leading to an amorphous oxide mixture of Cr2O3+x and CuO. By annealing the samples in the temperature range 400–1000 °C, the spinel phase (CuCr2O4) was obtained in both cases: (i) at 800 °C and (ii) at 600 °C as a result of the interactions between the precursors used, when the oxide system was amorphous and highly reactive. The presence of CuCr2O4 was highlighted by XRD and FTIR analyses.  相似文献   

16.
Neodymium(III) peroxotitanate is used as a precursor for obtaining Nd2TiO5. The last one possesses numerous valuable electrophysical properties. TiCl4, Nd(NO3)3·6H2O and H2O2 in mol ratio 1:2:10 were used as starting materials. The reaction ambience was alkalized to pH = 9 with a solution of NH3. The obtained neodymium(III) peroxotitanate and intermediate compounds of the isothermal heating were proved by the help of quantitative analysis and infrared spectroscopy (IRS). It has Nd4[Ti2(O2)4(OH)12]·7H2O composition. The absorption band observed in IRS at 831 cm?1 relates to a triangular bonding of the peroxo group of Ti, at 1062 cm?1—terminal groups Ti–OH and at 1491 and 1384 cm?1—the bridging OH?-groups Ti–O(H)–Ti. Nd2TiO5 was obtained by thermal decomposition of neodymium(III) peroxotitanate. The isothermal conditions for decomposition were determined on the base of differential thermal analysis, thermogravimetric and differential scanning calorimetry results in the temperature range of 20–1000 °C. The mechanism of thermal decomposition of Nd4[Ti2(O2)4(OH)12]·7H2O to Nd2TiO5 was studied. In the temperature range of 20–208 °C, a simultaneous decomposition of the peroxo groups by the separation of oxygen and hydrate water is conducted and Nd4[Ti2O4(OH)12] is obtained. From 208 to 390 °C, the terminal OH?-groups are separated and Nd4[Ti2O7(OH)6] is formed. In the range of 390–824 °C, the bridging OH?-groups are completely decomposed to Nd2TiO5. The optimal conditions for obtaining nanocrystalline Nd2TiO5 are 900 °C for 6 h and 20–80 nm.  相似文献   

17.
In this study, the effect of the sol-gel starting materials with different particle sizes on the sol-gel-synthesized spinel Li4Ti5O12 (LTO) was systematically investigated. The physical and electrochemical properties of the synthesized materials were characterized by X-ray diffraction, scanning electron microscopy, Brunauer-Emmett-Teller-specific surface area analyses, galvanostatic charge/discharge tests, cyclic voltammetry, and electrochemical impedance spectroscopy. It was found that the initial particle size of sol-gel starting material played a crucial role on the properties of as-prepared LTOs. The LTO synthesized with the relatively finer particle size of starting materials possessed relatively smaller particle size and larger specific surface area and therefore resulted in the superior electrochemical properties. The initial discharge capacity of the as-prepared LTO exhibited 168.2, 150.6, and 142.7 mAh g?1 at current densities of 1, 5, and 10 C, respectively, and up to 95, 95, and 90 % of the corresponding initial discharge capacity was retained after 50 cycles.  相似文献   

18.
Spinel phase Li4Ti5O12 (s-LTO) with an average primary particle size of 150 nm was synthesised via a solid state route by calcining a precursor mixture at 600 °C. The precursor was prepared from a stoichiometric mixture of TiO2 nanoparticles and an ethanolic solution of Li acetate and activated by ball-milling. Effects of the calcination temperature and atmosphere are examined in relation to the coexistence of impurity phases by X-ray diffraction and 6Li MAS NMR. The charge capacity of s-LTO, determined from cyclic voltammogram at a scan rate of 0.1 mV/s, was 142 mAh/g. The capacity of our optimised material is superior to that of commercially available spinel (a-LTO), despite the considerably smaller BET-specific surface area of the former. The superior properties of our material were also demonstrated by galvanostatic charging/discharging. From these observations, we conclude that the presented low-temperature solid state synthesis route provides LTO with improved electrochemical performance.  相似文献   

19.
The study of superparamagnetic Fe3O4/Ag nanocomposites have received great research attention due to their wide range of potential applications in biomedicine. In this report, an easy microemulsion reaction was employed to synthesis Fe3O4/Ag nanocomposites with self-aggregated branch like nanostructures. The Fe3O4 nanoparticles were initially prepared and subsequently AgNO3 was reduced as Ag by chemical reduction method. The results showed that the average size of the Fe3O4/Ag nanocomposites were in the range of 10 ± 2 nm. These nanoparticles were self-aggregated as a branch like nanostructure. The optical properties of Fe3O4 nanoparticles were modified with surface plasmon resonance of Ag nanoparticles. The observed saturation magnetization of superparamagnetic Fe3O4/Ag nanocomposites were 40 emu/g.  相似文献   

20.
A mixed oxide-covered mesh electrode composed of NiCo2O4 (MOME-NiCo2O4) was prepared on a stainless-steel substrate using thermal decomposition (slow-cooling rate method). Surface, bulk and electrochemical properties of MOME were studied using different techniques, namely scanning electron microscopy (SEM), X-ray diffraction (XRD), cyclic voltammetry (CV) with determination of the electrochemical porosity (?) and morphology factor (φ) parameters, quasi-stationary polarisation curves (PC) and electrochemical impedance spectroscopy (EIS). SEM images revealed a good coverage of the metallic wires by a compact oxide layer (absence of cracks). XRD analysis confirmed the formation of the spinel NiCo2O4 with the presence of NiO. The ‘in situ’ surface parameters denoted as ? and φ exhibited values of 0.39 and 0.33, respectively, revealing that the electrochemically active surface area is mainly confined to the ‘outer/external’ surface regions of the oxide layer. The PC was characterised by two Tafel slopes distributed in the low (b 1 = 46 mV dec?1) and high (b 2 = 59 mV dec?1) overpotential domains. The corresponding apparent exchange current densities were j 0(1) = (3.43 ± 0.11) × 10?6 A cm?2 and j 0(2) = (6.70 ± 0.08) × 10?6 A cm?2, respectively. The EIS study accomplished in the low-overpotential domain revealed a Tafel slope (b 1) of 51 mV dec?1. According to the spin-trapping reaction using N,N-dimethyl-p-nitrosoaniline (RNO), the MOME-NiCo2O4 electrode exhibited good performance for the generation of weakly adsorbed hydroxyl radicals (HO?) during the OER in electrolyte-free water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号