首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spread or Langmuir monolayer behavior of an ion pair amphiphile (IPA), hexadecyltrimethylammonium-dodecylsulfate (HTMA-DS), with a double-tailed cationic surfactant, dihexadecyldimethylammonium bromide (DHDAB), at the air/water interface was analyzed with surface pressure-area isotherms, area relaxation curves, and Brewster angle microscope (BAM) images. The surface pressure-area isotherms showed that with increasing the DHDAB molar ratio, X(DHDAB), spread monolayers of HTMA-DS with DHDAB became rigid. In addition, unreasonably small limiting areas per alkyl chain of the molecules in the monolayers were found, especially at X(DHDAB)=0.5, implying the molecular loss from the monolayers at the interface. For spread HTMA-DS/DHDAB monolayers at the interface, a new IPA, DHDA-DS, was proposed to form through the displacement of HTMA(+) from HTMA-DS by DHDA(+), leaving HTMA(+) dissociated. The formation of DHDA-DS and the desorption of dissociated HTMA(+) upon the interface compression were supported by the results obtained from designed monolayer experiments with BAM observations, and were discussed by considering the hydrophilicity, packing efficiency, and headgroup charge characteristic of the species. Moreover, the area relaxation curves of spread HTMA-DS/DHDAB monolayers suggested that the formation of DHDA-DS was strongly related to the improved monolayer stability at the interface, which may have implications for the DHDAB-enhanced physical stability of catanionic vesicles composed of HTMA-DS.  相似文献   

2.
The intricate interplay between the bilayer and monolayer properties of phosphatidylcholine (PC), phosphatidylglycerol (PG), and phosphatidylethanolamine (PE) phospholipids, in relation to their polar headgroup properties, and the effects of chain permutations on those polar headgroup properties have been demonstrated for the first time with a set of time-independent bilayer-monolayer equilibria studies. Bilayer and monolayer phase behavior for PE is quite different than that observed for PC and PG. This difference is attributed to the characteristic biophysical PE polar headgroup property of favorable intermolecular hydrogen-bonding and electrostatic interactions in both the bilayer and monolayer states. This characteristic hydrogen-bonding ability of the PE polar headgroup is reflected in the condensed nature of PE monolayers and a decrease in equilibrium monolayer collapse pressure at temperatures below the monolayer critical temperature, T(c) (whether above or below the monolayer triple point temperature, T(t)). This interesting phenomena is compared to equilibrated PC and PG monolayers which collapse to form bilayers at 45 mN/m at temperatures both above and below monolayer T(c). Additionally, it has been demonstrated by measurements of the equilibrium spreading pressure, pie, that at temperatures above the bilayer main gel-to-liquid-crystalline phase-transition temperature, T(m), all liquid-crystalline phospholipid bilayers spread to form monolayers with pie around 45 mN/m, and spread liquid-expanded equilibrated monolayers collapse at 45 mN/m to form their respective thermodynamically stable liquid-crystalline bilayers. At temperatures below bilayer T(m), PC and PG gel bilayers exhibit a drop in bilayer pi(e) values < or =0.2 mN/m forming gaseous monolayers, whereas the value of pic of spread monolayers remains around 45 mN/m. This suggests that spread equilibrated PC and PG monolayers collapse to a metastable liquid-crystalline bilayer structure at temperatures below bilayer T(m) (where the thermodynamically stable bilayer liquid-crystalline phase does not exist) and with a surface pressure of 45 mN/m, a surface chemical property characteristically observed at temperatures above bilayer T(m) (monolayer T(c)). In contrast, PE gel bilayers, which exist at temperatures below bilayer T(m) but above bilayer T(s) (bilayer crystal-to-gel phase-transition temperature), exhibit gel bilayer spreading to form equilibrated monolayers with intermediate pie values in the range of 30-40 mN/m; however, bilayer pie and monolayer pic values remain equal in value to one another. Contrastingly, at temperatures below bilayer T(s), PE crystalline bilayers exhibit bilayer pie values < or =0.2 mN/m forming equilibrated gaseous monolayers, whereas spread monolayers collapse at a value of pic remaining around 30 mN/m, indicative of metastable gel bilayer formation.  相似文献   

3.
This paper reports the preparation and characterization of pure Langmuir and Langmuir-Blodgett (LB) films of a stilbene derivative containing two alkyl chains, namely 4-dioctadecylamino-4'-nitrostilbene. Mixed films incorporating docosanoic acid and the stilbene derivative are also studied. Brewster angle microscopy (BAM) analysis has revealed the existence of randomly oriented three-dimensional (3D) aggregates, spontaneously formed immediately after the spreading process of the stilbene derivative onto the water surface. These 3D aggregates coexist with a Langmuir film that shows the typical gas, liquid, and solid-like phases in the surface pressure and surface potential vs area per molecule isotherms, indicative of an average preferential orientation of the stilbene compound at the air-water interface, and a gradual molecular arrangement into a defined structure upon compression. A blue shift of 55 nm of the reflection spectrum of the Langmuir film with respect to the spectrum of a chloroform solution of the nitrostilbene indicates that two-dimensional (2D) H-aggregates are formed at the air-water interface. The monolayers are transferred undisturbed onto solid substrates with atomic force microscopy (AFM) revealing that the one layer LB films are constituted by a monolayer of the stilbene derivative together with some 3D aggregates. When the nitrostilbene compound is blended with docosanoic acid, the 3D aggregation is avoided in the Langmuir and Langmuir-Blodgett films, but does not limit the formation of 2D H-aggregates, desirable for second-order nonlinear optical response in the blue domain. The AFM images of the mixed LB films show that they are formed by a docosanoic acid monolayer and, on the top of it, a bilayer of the stilbene derivative.  相似文献   

4.
Three model flavonoid-based bioactive molecules with different lipid chain lengths (RuCn: n=8, 12, 18) were newly synthesized. The surface properties [surface pressure (π)-area (A), surface potential (ΔV)-surface pressure (π) and dipole moment (u(⊥))-surface pressure (π)] of pure RuCn and the lecithin membrane compounds had been investigated by using the Langmuir monolayer technology. The results suggested that the distinctive monolayer behavior of RuCn is strongly dependent on the lipid chain length. The great differences in the monolayer properties brought by the lipid chain length could be attributed to two major factors: (i) the ionization degree of the bulky hydrophilic head group (including hydroxyl and NH groups) alters its local field solely via the surface potential; (ii) tring molecular (or dipole) packing density within monolayers. The excess Gibbs energy (ΔG((ex))) calculated for the RuCn-lecithin mixed monolayers infers that higher stability of the mixed monolayer can be strengthened as the lipid chain length decreases. And the addition of RuCn into lecithin membrane may increase the total u(⊥) of the binary mixed monolayers, which could inhibit the hydration of the lecithin's hydrophilic head groups. The shorter the lipid chain length of RuCn (e.g., RuC8) is, the higher the surface activity can be. Our findings provide a molecular basis for the application of such class of biomolecules in the functional food, cosmetics and medicine.  相似文献   

5.
To gain insight into the interactions between fengycin and skin membrane lipids, mixed fengycin/ceramide monolayers were investigated using atomic force microscopy (AFM) (monolayers supported on mica) and surface pressure-area isotherms (monolayers at the air-water interface). AFM topographic images revealed phase separation in mixed monolayers prepared at 20 degrees C/pH 2 and composed of 0.25 and 0.5 fengycin molar ratios, in the form of two-dimensional (2-D) hexagonal crystalline domains of ceramide surrounded by a fengycin-enriched fluid phase. Surface pressure-area isotherms as well as friction and adhesion AFM images confirmed that the two phases had different molecular orientations: while ceramide formed a highly ordered phase with crystalline chain packing, fengycin exhibited a disordered fluid phase with the peptide ring lying horizontally on the substrate. Increasing the temperature and pH to values corresponding to the skin parameters, i.e., 37 degrees C/pH 5, was found to dramatically affect the film organization. At low fengycin molar ratio (0.25), the hexagonal ceramide domains transformed into round domains, while at higher ratio (0.5) these were shown to melt into a continuous fengycin/ceramide fluid phase. These observations were directly supported by the thermodynamic analysis (deviation from the additivity rule, excess of free energy) of the monolayer properties at the air-water interface. Accordingly, this study demonstrates that both the environmental conditions (temperature, pH) and fengycin concentration influence the molecular organization of mixed fengycin/ceramide monolayers. We believe that the ability to modulate the formation of 2-D domains in the skin membrane may be an important biological function of fengycin, which should be increasingly investigated in future pharmacological research.  相似文献   

6.
In this work, organized mixed monolayers containing a cationic water-insoluble iridium(III) complex, Ir-dye, [Ir(ppy)(2)(tmphen)]PF(6), (tmphen = 3,4,7,8-tetramethyl-1,10-phenanthroline, and ppy = 2-phenylpyridine), and an anionic lipid matrix, DMPA, dimyristoyl-phosphatidic acid, with different molar proportions, were formed by the co-spreading method at the air-water interface. The presence of the dye at the interface, as well as the molecular organization of the mixed films, is deduced from surface techniques such as pi-A isotherms, Brewster angle microscopy (BAM) and reflection spectroscopy. The results obtained remark the formation of an equimolar mixed film, Ir-dye/DMPA = 1:1. BAM images reveal a whole homogeneous monolayer, with gradually increasing reflectivity along the compression process up to reaching the collapse of this equimolecular monolayer at pi approximately equal to 37 mNm(-1). Increasing the molar ratio of DMPA in the mixture, the excess of lipid molecules organizes themselves forming dark flower-like domains of pure DMPA at high surface pressures, coexisting with the mixed Ir-dye/DMPA = 1:1 monolayer. On the other hand, unstable mixed monolayers are obtained by using an initial dye surface concentration higher than the equimolecular one. These mixed Langmuir monolayers have been successfully transferred onto solid substrates by the LB (Langmuir-Blodgett) technique.  相似文献   

7.
《Supramolecular Science》1995,2(3-4):219-231
The phase behavior and morphology of segregated structures are considered for mixed Langmuir monolayers, which comprise a type of supramolecular polymer having a complex internal structure mixed with a long chain fatty acid. We fabricated two different series of mixed monolayers from a polyglutamate (PG) copolymer having 30% octadecyl ester side chains and 70% methyl ester side chains and fatty acids. These mixed monolayers deposited on a solid substrate were studied by pressure-area diagram measurements, X-ray analysis, and atomic force microscopy. Stearic acid (STA) and hexacosanoic acid (HCA) with alkyl chain lengths of 17 and 25 carbon atoms, respectively, were used as low molecular weight components. For the mixture PG:STA, where the length of the STA molecules is comparable to the length of the PG side chains, we observed the formation of partially miscible monolayers. These mixtures exhibit a nanometer scale domain morphology formed by the STA molecules dissolved in the outer shell of the PG monolayer. In contrast, for the PG:HCA mixture we observed a strong tendency for microphase separation and the formation of well-defined submicron segregated structures in the monolayers. Lateral compression of the mixed monolayers to a point close to the collapse pressure promotes microphase separation in both types of mixed monolayers with the formation of anisotropic surface morphology and oriented domains.  相似文献   

8.
Pure and mixed monolayers of a synthetic peptide, GPR-i3n, derived from the third intracellular loop of the alpha2 adrenergic receptor and a shorter inactive oligopeptide, N-formyl-(Gly)3-(Cys) (called 3GC), were prepared on gold surfaces. The mixing ratio of the GPR-i3n and 3GC was used to control G-protein binding capability. The GPR-i3n peptide is specially designed for bovine G-protein selectivity and has been proven to have high affinity to G-proteins [Vahlberg, C.; Petoral, R. M., Jr.; Lindell, C.; Broo, K.; Uvdal, K. Langmuir 2006, 22 (17), 7260-7264]. Pure 3GC monolayers show very low protein adsorption capability. In this study, 3GC is chosen as a coadsorbent, with the aim to induce molecular conformational changes during monolayer formation to enhance G-protein adsorption. A full characterization of the mixed monolayers was done. The monolayer thickness and the mass-related surface coverage for both GPR-i3n and 3GC were investigated using radio labeling. The GPR-i3n was labeled by 125I-targeting tyrosine, and the activity was measured by using radioimmunoassay (RIA). The formation and chemical composition of GPR-i3n and 3GC monolayers were investigated using X-ray photoelectron spectroscopy, and it is shown that both GPR-i3n and 3GC bind chemically to the gold surface. The interaction between the mixed monolayers and G-proteins was investigated by means of real-time surface plasmon resonance. There is a higher protein binding capacity to the monolayer when the GPR-i3n peptide is intermixed with the 3GC coadsorbent, despite the fact that the 3GC itself has a very low G-protein binding capability. This supports a molecular reorientation at the surface, while 3GC is intermixed with GPR-i3n.  相似文献   

9.
This paper presents simulations of calcium carbonate ordering in contact with self-assembled monolayers. The calculations use potential-based molecular dynamics to model the crystallization of calcium carbonate to calcite expressing both the (00.1) and (01.2) surfaces. The effect of monolayer properties: ionization; epitaxial matching; charge density; and headgroup orientation on the crystallization process are examined in detail. The results demonstrate that highly charged surfaces are vital to stimulate ordering and crystallization. Template directed crystallization requires charge epitaxy between both the crystal surface and the monolayer. The orientation of the headgroup appears to make no contribution to the selection of the crystal surface.  相似文献   

10.
This article describes a variety of monolayers anchored directly onto silicon surfaces without an oxide interlayer, their formation mechanisms, their technological applications, and our personal views on the future prospects for this field. The chemical modification of non-oxidized silicon surfaces utilizing monolayers was first reported in 1993. The basic finding that a non-oxidized silicon surface could be neutralized with alkyl chains through direct covalent linkage, i.e., silicon-carbon, has offered chemical scientists ease of handling even in an ambient environment and, thus, research has been predictably focused on forming anti-stiction coating films for nano- and micro-electromechanical systems (NEMS/MEMS). Such surface reforming has also been achieved by using other monolayers, which form interfacial bonds, e.g., silicon-nitrogen and silicon-oxygen. The resultant monolayer surfaces are useful for silicon-based applications including molecular electron transfer films, monolayer templates, molecular insulators, capsulators, and bioderivatives. Such monolayers are applicable not only for surface modification, but also for manipulating individual nanomaterials. By modifying the terminal groups of monolayers with nanomaterials including nanocrystals and biomolecules, the nanomaterials can remarkably be immobilized directly onto non-oxidized silicon surfaces based on the formation mechanisms of the monolayer. Such immobilizations will revolutionize the analysis of the specific features and capabilities of individual nanomaterials. Furthermore, the path will be opened for the development of more advanced monolayer-derived chip technology. To achieve this goal, it is extremely important to thoroughly understand the functionalization processes on silicon, since the resultant internal structures and properties of monolayer-derivative silicon may strongly depend on their course of formation.  相似文献   

11.
The phase behavior and morphological characteristics of monolayers composed of equimolar mixed cationic-anionic surfactants at the air/water interface were investigated by measurements of surface pressure-area per alkyl chain (pi-A) and surface potential-area per alkyl chain (DeltaV-A) isotherms with Brewster angle microscope (BAM) observations. Cationic single-alkyl ammonium bromides and anionic sodium single-alkyl sulfates with alkyl chain length ranging from C(12) to C(16) were used to form mixed surfactant monolayers on the water subphase at 21 degrees C by a co-spreading approach. The results demonstrated that when the monolayers were at states with larger areas per alkyl chain during the monolayer compression process, the DeltaV-A isotherms were generally more sensitive than the pi-A isotherms to the molecular orientation variations. For the mixed monolayer components with longer alkyl chains, a close-packed monolayer with condensed monolayer characteristics resulted apparently due to the stronger dispersion interaction between the molecules. BAM images also revealed that with the increase in the alkyl chain length of the surfactants in the mixed monolayers, the condensed/collapse phase formation of the monolayers during the interface compression stage became pronounced. In addition, the variations in the condensed monolayer morphology of the equimolar mixed cationic-anionic surfactants were closely related to the alkyl chain lengths of the components.  相似文献   

12.
In this paper we describe the formation and characterization of self-assembled monolayers of octadecylphosphonic acid (ODPA) on epitaxial (0001) GaN films on sapphire. By immersing the substrate in its toluene solution, ODPA strongly adsorbed onto UV/O 3-treated GaN to give a hydrophobic surface. Spectroscopic ellipsometry verified the formation of a well-packed monolayer of ODPA on the GaN substrate. In contrast, adsorption of other primarily substituted hydrocarbons (C n H 2 n+1 X; n = 16-18; X = -COOH, -NH 2, -SH, and -OH) offered less hydrophobic surfaces, reflecting their weaker interaction with the GaN substrate surfaces. A UV/O 3-treated N-polar GaN had a high affinity to the -COOH group in addition to ODPA, possibly reflecting the basic properties of the surface. These observations suggested that the molecular adsorption was primarily based on hydrogen bond interactions between the surface oxide layer on the GaN substrate and the polar functional groups of the molecules. The as-prepared ODPA monolayers were desorbed from the GaN substrates by soaking in an aqueous solution, particularly in a basic solution. However, ODPA monolayers heated at 160 degrees C exhibited suppressed desorption in acidic and neutral aqueous solution maybe due to covalent bond formation between ODPA and the surface. X-ray photoelectron spectroscopy provided insight into the effect of the UV/O 3 treatment on the surface composition of the GaN substrate and also the ODPA monolayer formation. These results demonstrate that the surface of a GaN substrate can be tailored with organic molecules having an alkylphosphonic acid moiety for future sensor and device applications.  相似文献   

13.
The role of dipalmitoylphosphatic acid (DPPA) as a transfer promoter to enhance the Langmuir-Blodgett (LB) deposition of a dipalmitoylphosphatidylcholine (DPPC) monolayer at air/liquid interfaces was investigated, and the effects of Ca2+ ions in the subphase were discussed. The miscibility of the two components at air/liquid interfaces was evaluated by surface pressure-area per molecule isotherms, thermodynamic analysis, and by the direct observation of Brewster angle microscopy (BAM). Multilayer LB deposition behavior of the mixed DPPA/DPPC monolayers was then studied by transferring the monolayers onto hydrophilic glass plates at a surface pressure of 30 mN/m. The results showed that the two components, DPPA and DPPC, were miscible in a monolayer on both subphases of pure water and 0.2 mM CaCl2 solution. However, an exception occurs between X(DPPA)=0.2 and 0.5 at air/CaCl2-solution interface, where a partially miscible monolayer with phase separation may occur. Negative deviations in the excess area analysis were found for the mixed monolayer system, indicating the existence of attractive interactions between DPPA and DPPC molecules in the monolayers. The monolayers were stable at the surface pressure of 30 mN/m for the following LB deposition as evaluated from the area relaxation behavior. It was found that the presence of Ca2+ ions had a stabilization effect for DPPA-rich monolayers, probably due to the association of negatively charged DPPA molecules with Ca2+ ions. Moreover, the Ca2+ ions may enhance the adhesion of DPPA polar groups to a glass surface and the interactions between DPPA polar groups in the multilayer LB film structure. As a result, Y-type multilayer LB films containing DPPC could be fabricated from the mixed DPPA/DPPC monolayers with the presence of Ca2+ ions.  相似文献   

14.
Molecular recognition of mixed nucleolipids of 1-(2-octadecyloxycarbonylethyl)cytosine and 7-(2-octadecyloxycarbonylethyl)guanine in the monolayers at the air-water interface and Langmuir-Blodgett (LB) films has been investigated in detail using surface pressure/potential-area isotherms, infrared reflection-absorption spectroscopy (IRRAS), and Fourier transform infrared (FTIR) transmission spectroscopy, respectively. Prior to molecular recognition, the cytosine moieties in the monolayer were hydrogen bonded with an almost flat-on orientation, the alkyl chains were uniaxially oriented with respect to the film normal, the guanine moieties in the monolayer were stacked probably through pi-pi interaction with an end-on orientation, and the C-C-C planes of the alkyl chains were preferentially oriented parallel to the water surface. In the monolayer of equimolar mixture, molecular recognition between the cytosine and guanine moieties occurred together with the ring planes of base pairing and the C-C-C planes of the alkyl chains favorably oriented parallel to the water surface. The guanine moieties underwent an orientation change from an end-on mode before molecular recognition to a flat-on one after molecular recognition. The base pairing between the cytosine and guanine moieties in the monolayers was achieved since the N7-substituted guanine derivatives suppressed the formation of guanine tetramers. Both the IRRAS spectra of the monolayers and the FTIR spectra of the LB films presented the exact sites in the cytosine and guanine moieties for the formation of triple hydrogen bonds. The base pairing resulted in a change in molecular orientation and interaction, and the corresponding LB film exhibited a different phase transition behavior from a typical crystal transition for the cytosine-functionalized nucleolipids and an analogous glass transition for the guanine-functionalized nucleolipids. The thermal stability of the mixed LB film was improved in comparison to the LB films of pure components.  相似文献   

15.
We describe a simple experimental approach for delivering self-assembled monolayers (SAMs) of octadecylphosphonic acid (OPA) on many oxide surfaces using a nonpolar medium with a dielectric constant around 4 (e.g., trichloroethylene). This approach readily results in the formation of full-coverage OPA SAMs on a wide variety of oxide surfaces including cleaved mica, Si wafer, quartz, and aluminum. Especially, the availability of delivering full-coverage OPA SAM on a Si wafer is unique, as no OPA SAMs at all could be formed on a Si wafer when using a polar OPA solution. The reason a nonpolar solvent is superior lies in the very fact that the hydrophilic OPA headgroup tends to escape from the nonpolar solution and is thus enriched at the medium-air interface. It is these OPA headgroups seeking a hydrophilic surface that make possible the well-controlled OPA monolayer on an oxide surface.  相似文献   

16.
The interactions of mixed monolayers of two lipids, zwitterionic 1,2-dipalmitoyl-phosphatidylcholine (DPPC) and positively charged 1,2-dipalmitoyl-3-trimethylammonium-propane (DPTAP), with phytohormone indolilo-3-acetic acid (IAA) and selenate anions in the aqueous subphase were studied. For this purpose, isotherms of the surface pressure versus the mean molecular area were recorded. Domain formation was investigated by using Brewster angle microscopy (BAM). The method of grazing incidence X-ray diffraction (GIXD) was also applied for the characterization of the organization of lipid molecules in condensed monolayers. It was found that selenate ions contribute to monolayer condensation by neutralizing the positive net charge of mixed monolayers whereas IAA molecules penetrated the lipid monolayer, causing its expansion/fluidization. When both solutes were introduced into the subphase, a competition between them for interaction with the positively charged lipids in the monolayer was observed.  相似文献   

17.
In this work, we analyse theoretically the hypothesis that zwitterionic lipids form dimers in adsorption monolayers on water/ hydrocarbon phase boundary. A dimer can be modelled as a couple of lipid molecules whose headgroup lateral dipole moments have antiparallel orientation. Properties including surface pressure, chemical potentials and activity coefficients are deduced from a general expression for the free energy of the monolayer. The theoretical model is in a good agreement with experimental data for surface pressure and surface potential of lipid monolayers. The results favour the hypothesis about formation of dimers in equilibrium with monomers, with the amount of the species depending on the area per molecule and temperature. The reaction of dimerisation turns out to be exothermic with a heat of about 2.5kT per dimer. The results may be applied to the molecular models of membrane structures and mechanisms.  相似文献   

18.
In this work we have analyzed the structural and topographical characteristics of mixed monolayers formed by an adsorbed whey protein isolate (WPI) and a spread monoglyceride monolayer (monopalmitin or monoolein) on the previously adsorbed protein film. Measurements of the surface pressure (pi)-area (A) isotherm were obtained at 20 degrees C and at pH 7 for protein-adsorbed films from water in a Wilhelmy-type film balance. Since the surface concentration (1/A) is actually unknown for the adsorbed monolayer, the values were derived by assuming that the A values for adsorbed and spread monolayers were equal at the collapse point of the mixed film. The pi-A isotherm deduced for adsorbed WPI monolayer in this work is practically the same as that obtained directly by spreading. For WPI-monoglyceride mixed films, the pi-A isotherms for adsorbed and spread monolayers at pi higher than the equilibrium surface pressure of WPI are practically coincident, a phenomenon which may be attributed to the protein displacement by the monoglyceride from the interface. At lower surface pressures, WPI and monoglyceride coexist at the interface and the adsorbed and spread pi-A isotherms (i.e., the monolayer structure of the mixed films) are different. Monopalmitin has a higher capacity than monoolein for the displacement of protein from the air-water interface. However, some degree of interactions exists between proteins and monoglycerides and these interactions are higher for adsorbed than for spread films. The topography of the monolayer corroborates these conclusions.  相似文献   

19.
The surface pressure-area diagrams of double-chain fluorocarbon amphiphiles with different headgroup compositions show that the amphiphiles arrange almost perpendicularly to the water subphase and the structure of headgroups exerts significant influence on the amphiphile packing. Strong hydrogen bonding and weak electrostatic interaction favor the formation of stable monolayers. Perfluorooctanoic acid (FOA) cannot form monolayer at water/air interface and can only form liquid monolayer in subphase of calcium nitrate solution. Complete phase separation of palmitic acid and a fluorocarbon amphiphile with shorter hydrocarbon spacer group, 1, could be demonstrated in monolayers by using the phase rule of Crisp. The creation of phase-separated monolayers is possible when the monolayer is composed of a mixture of palmitic acid and a fluorocarbon amphiphile with longer hydrocarbon spacer group, 2. It can be suggested that the miscibility of hydrocarbon amphiphiles with fluorocarbon amphiphiles is determined by the hydrocarbon fraction of fluorocarbon amphiphiles.  相似文献   

20.
刘耀虎  刘鸣华 《中国化学》2002,20(6):601-605
IntroductionReversiblecolorchangesuponexternalorinternalstimulationshavebeenattractingmuchattentionduetotheirutilityasfunctionalmaterials .Forexample ,pho tochromismdescribesthecolorchangesinducedbypho toirradiationandcanbeusedasphoto recordingmateri als…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号