首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Rapid mixing of liquids is important for most microfluidic applications. However, mixing is slow in conventional micromixers, because, in the absence of turbulence, mixing here occurs by molecular diffusion. Recent experiments show that mixing can be enhanced by generating transient flow resulting in chaotic advection. While these are planar microchannels, here we show that three-dimensional orientations of fluidic vessels and channels can enhance significantly mixing of liquids. In particular, we present a novel, multihelical microchannel system built in soft gels, for which the helix angle, helix radius, axial length, and even the asymmetry of the channel cross section are easily tailored to achieve the desired mixing. Mixing efficiency increases with helix angle and asymmetry of channel cross section, which leads to orders of magnitude reduction in mixing length over conventional mixers. This new scheme of generating 3D microchannels will help in miniaturization of devices, process intensification, and generation of multifunctional process units for microfluidic applications.  相似文献   

2.
Xia HM  Wan SY  Shu C  Chew YT 《Lab on a chip》2005,5(7):748-755
We report two chaotic micromixers that exhibit fast mixing at low Reynolds numbers in this paper. Passive mixers usually use the channel geometry to stir the fluids, and many previously reported designs rely on inertial effects which are only available at moderate Re. In this paper, we propose two chaotic micromixers using two-layer crossing channels. Both numerical and experimental studies show that the mixers are very efficient for fluid manipulation at low Reynolds numbers, such as stretching and splitting, folding and recombination, through which chaotic advection can be generated and the mixing is significantly promoted. More importantly, the generation of chaotic advection does not rely on the fluid inertial forces, so the mixers work well at very low Re. The mixers are benchmarked against a three-dimensional serpentine mixer. Results show that the latter is inefficient at Re = 0.2, while the new design exhibits rapid mixing at Re = 0.2 and at Re of O(10(-2)). The new mixer design will benefit various microfluidic systems.  相似文献   

3.
Wang Y  Lin Q  Mukherjee T 《Lab on a chip》2005,5(8):877-887
This paper presents a model for the efficient and accurate simulations of laminar diffusion-based complex electrokinetic passive micromixers by representing them as a system of mixing elements of relatively simple geometry. Parameterized and analytical models for such elements are obtained, which hold for general sample concentration profiles and arbitrary flow ratios at the element inlet. A lumped-parameter and system-level model is constructed for a complex micromixer, in which the constituent mixing elements are represented by element models, in such a way that an appropriate set of parameters are continuous at the interface between each pair of adjacent elements. The system-level model, which simultaneously computes electric circuitry and sample concentration distributions in the entire micromixer, agrees with numerical and experimental results, and offers orders-of-magnitude improvements in computational efficiency over full numerical simulations. The efficiency and usefulness of the model is demonstrated by exploring a number of laminar diffusion based mixers and mixing networks that occur in practice.  相似文献   

4.
T Rohr  C Yu  M H Davey  F Svec  J M Fréchet 《Electrophoresis》2001,22(18):3959-3967
Porous monolithic polymers have been prepared by photoinitiated polymerization of mixtures consisting of 2-hydroxyethyl methacrylate, ethylene dimethacrylate, UV-sensitive free radical initiator and porogenic solvent within channels of specifically designed microfluidic chips and used as micromixers. Substituting azobisisobutyronitrile with 2,2-dimethoxy-2-phenylacetophenone considerably accelerated the kinetics of the polymerization. Mixtures of cyclohexanol and 1 -dodecanol and of hexane and methanol were used, respectively, to control the porous properties and therefore the mixing efficiency of the device. The performance of the monolithic mixers has been tested by pumping aqueous solutions of two fluorescent dyes at various flow rates and monitoring the point at which the boundary of both streams completely disappears. Best results were achieved with a monolithic mixer containing very large irregular pores.  相似文献   

5.
Summary: Evolution of droplets generated by static mixers have been investigated in terms of surfactant concentration, flow rate through the pump, monomer hydrophobicity and the type of static mixer. Operating at faster pump flow rates and using the PAC static mixers generated smaller miniemulsion droplets. Similar effects were observed at higher surfactant concentrations (3.0 vs. 1.0 g/L) and using monomers of increasing hydrophilicity (MMA vs. St). When comparing the efficiency of PAC static mixers to SMX mixing elements it was found that SMX was capable of generating droplets approximately 100 nm smaller at similar pump flow rates in the same time period. Based on these promising results, the SMX mixers were further evaluated based on surfactant concentration. The miniemulsion droplets were polymerized and their distribution was evaluated.  相似文献   

6.
Jen CP  Wu CY  Lin YC  Wu CY 《Lab on a chip》2003,3(2):77-81
Chaotic mixers with twisted microchannels were designed and simulated numerically in the present study. The phenomenon whereby a simple Eulerian velocity field may generate a chaotic response in the distribution of a Lagrangian marker is termed chaotic advection. Dynamic system theory indicates that chaotic particle motion can occur when a velocity field is either two-dimensional and time-dependent, or three-dimensional. In the present study, micromixers with three-dimensional structures of the twisted microchannel were designed in order to induce chaotic mixing. In addition to the basic T-mixer, three types of micromixers with inclined, oblique and wavelike microchannels were investigated. In the design of each twisted microchannel, the angle of the channels' bottoms alternates in each subsection. When the fluids enter the twisted microchannels, the flow sways around the varying structures within the microchannels. The designs of the twisted microchannels provide a third degree of freedom to the flow field in the microchannel. Therefore, chaotic regimes that lead to chaotic mixing may arise. The numerical results indicate that mixing occurs in the main channel and progressively larger mixing lengths are required as the Peclet number increased. The swaying of the flow in the twisted microchannel causes chaotic advection. Among the four micromixer designs, the micromixer with the inclined channel most improved mixing. Furthermore, using the inclined mixer with six subsections yielded optimum performance, decreasing the mixing length by up to 31% from that of the basic T-mixer.  相似文献   

7.
Summary: In single screw plasticizing technology dispersive mixing elements, i.e., axial and spiral Maddock shear heads, are often used to improve the melt quality. Mathematical models are necessary to efficiently design the mixing section. An analytical model for the design of Maddock mixers is presented in this work. In addition, a CFD-software package is employed to determine the flow and pressure field for different geometries and processing conditions. For the design and process analysis of fluted dispersive mixers the validity and potential of simplified analytical solutions are compared to more versatile and detailed CFD-simulations.  相似文献   

8.
The influence of interdigital multilamination micromixer characteristics on monomer conversions, molecular weights and especially on the polydispersity index of block copolymers synthesized continuously in two microtube reactors is investigated. The micromixers are used to mix, before copolymerization, a polymer solution with different viscosities and the second monomer. Different geometries of micromixer (number of microchannels, characteristic lengths) have been studied. It was found that polydispersity indices of the copolymers follow a linear relationship with the Reynolds number in the micromixer, represented by a form factor. Thus, beside the operating conditions (nature of the first block and comonomer flow rate), the choice of the micromixer geometry and dimension is essential to control the copolymerization in terms of molecular weights and polydispersity indices. This linear correlation allows the prediction of copolymer features. It can also be a new method to optimize existing micromixers or design other geometries so that mixing could be more efficient.  相似文献   

9.
The use of packed flow-through mixers for intense mixing of liquid media and of liquids with a finely dispersed phase is considered. Ways to determine the mixing and turbulent exchange coefficients for evaluating the mixing efficiency in channels and in packed flow-through mixers are presented. The results are consistent with the experimental data on turbulent viscosity in pipes. An expression is obtained for calculating the turbulent viscosity coefficient in a packing bed. Comparative characteristics of mixers with Raschig rings and Inzhekhim packing are presented. The calculated values of the Peclet number for various packings in relation to the Reynolds number are given.  相似文献   

10.
Liu AL  He FY  Wang K  Zhou T  Lu Y  Xia XH 《Lab on a chip》2005,5(9):974-978
We developed a facile and rapid one-step technique for design and fabrication of passive micromixers in microfluidic devices using a direct-printing process. A laser printing mechanism was dexterously adopted to pattern the microchannels with different gray levels using vector graphic software. With the present method, periodically ordered specific bas-relief microstructures can be easily fabricated on transparencies by a simple printing process. The size and shape of the resultant microstructures are determined by the gray level of the graphic software and the resolution of the laser printer. Patterns of specific bas-relief microstructures on the floor of a channel act as obstacles in the flow path for advection mixing, which can be used as efficient mixing elements. The mixing effect of the resultant micromixer in microfluidic devices was evaluated using CCD fluorescence spectroscopy. We found that the mixing performance depends strongly on the gray level values. Under optimal conditions, fast passive mixing with our periodic ordered patterns in microfluidic devices has been achieved at the very early stages of the laminar flow. In addition, fabrication of micromixers using the present versatile technique requires less than an hour. The present method is promising for fabrication of micromixers in microfluidic devices at low cost and without complicated devices and environment, providing a simple solution to mixing problems in the micro-total-analysis-systems field.  相似文献   

11.
Lim TW  Son Y  Jeong YJ  Yang DY  Kong HJ  Lee KS  Kim DP 《Lab on a chip》2011,11(1):100-103
In this study, we report a neo-conceptive three-dimensionally (3D) crossing manifold micromixer (CMM) embedded in microchannel. Fabricated by sequential processes of photolithography and two photon absorption stereolithography, this leads to a microfluidic system with a built-in micromixer in a site controlled manner. The effectiveness of CMM is investigated numerically and experimentally. Through the numerical simulation, it is estimated that a high mixing ratio of 90% can be obtained even in a channel length shorter than five times the channel width. This compares well with the conventional passive type of micromixers that have a gradual increase in mixing efficiency with the length of the channel. Furthermore, the mixing performance of the realized CMM built-in microchannel is observed by confocal microscopy.  相似文献   

12.
Rapid droplet mixers for digital microfluidic systems   总被引:3,自引:0,他引:3  
Paik P  Pamula VK  Fair RB 《Lab on a chip》2003,3(4):253-259
The mixing of analytes and reagents for a biological or chemical lab-on-a-chip is an important, yet difficult, microfluidic operation. As volumes approach the sub-nanoliter regime, the mixing of liquids is hindered by laminar flow conditions. An electrowetting-based linear-array droplet mixer has previously been reported. However, fixed geometric parameters and the presence of flow reversibility have prevented even faster droplet mixing times. In this paper, we study the effects of varying droplet aspect ratios (height:diameter) on linear-array droplet mixers, and propose mixing strategies applicable for both high and low aspect ratio systems. An optimal aspect ratio for four electrode linear-array mixing was found to be 0.4, with a mixing time of 4.6 seconds. Mixing times were further reduced at this ratio to less than three seconds using a two-dimensional array mixer, which eliminates the effects of flow reversibility. For lower aspect ratio (相似文献   

13.
Fluid mixing in planar spiral microchannels   总被引:1,自引:0,他引:1  
Mixing of fluids at the microscale poses a variety of challenges, many of which arise from the fact that molecular diffusion is the dominant transport mechanism in the laminar flow regime. While considerable progress has been made toward developing strategies to achieve improved mixing in microfluidic systems, many of these techniques introduce additional complexity to device fabrication and/or operation processes. In this work, we explore the use of compact spiral-shaped flow geometries designed to achieve efficient mixing in a format that can be constructed using a single planar soft lithography step without the need for multilayer alignment. A series of 150 microm-wide by 29 microm-tall channels were constructed, each of which incorporated a series of spiral shaped sections arrayed along the flow path. Five spiral designs with varying channel lengths were investigated, and mixing studies were carried out at flow rates corresponding to Reynolds numbers ranging from 0.02 to 18.6. Under appropriate conditions, transverse Dean flows are induced that augment diffusive transport and promote enhanced mixing in considerably shorter downstream distances as compared with conventional planar straight channel designs. Mixing efficiency can be further enhanced by incorporating expansion vortex effects via abrupt changes in cross-sectional area along the flow path.  相似文献   

14.
Lin JL  Lee KH  Lee GB 《Electrophoresis》2005,26(24):4605-4615
This study presents a new active micromixer with high mixing efficiency achieved by means of a gradient distribution of the surface zeta potential controlled by changing the frequency of voltage applied on shielding electrodes. Gradient surface zeta potential is generated by applying a high voltage to inclined buried shielding electrodes. While alternating the frequency of driving voltage, the zeta potential could be changed accordingly, thus providing a significant mixing effect inside microchannels. A theoretical model is proposed to predict the distribution of zeta potential. The results from this model are critically compared with the well-developed three-capacitor model. Additionally, two time-factor scales, the charge time of capacitor and mixing length flow time, are used to predict the optimum frequency. The prediction of optimum frequency, 0.5 Hz, is consistent with experimental results. Moreover, a five-pair inclined shielding electrode with a frequency of 0.5 Hz leads to a significant improvement in the mixing performance of the active micromixer. Numerical results indicate that a localized flow circulation is generated when the control voltage is applied to the inclined shielding electrodes. Furthermore, the streamlines are experimentally observed by using fluorescent beads. The shape of this circulation is dependent on the distribution of gradient zeta potential, which is determined by the arrangement of electrodes. The effects of the number of electrode pairs and the layout of shielding electrodes on the mixing performance of micromixer are also explored both numerically and experimentally. It is revealed that five-pair inclined electrodes at 0.5 Hz provide the highest mixing efficiency. Finally, a reaction between N-benzoyl-L-arginine-p-nitroanilide and trypsin enzyme is performed to verify the capability of micromixers. The experimental results reveal that the reaction can achieve a higher performance indicating a higher mixing efficiency. The active micromixers could be used in microfluidic systems for improving the mixing efficiency and thus enhancing the bioreaction.  相似文献   

15.
Current three-dimensional micromixers for continuous flow reactions and nanoparticle synthesis are complex in structure and difficult to fabricate. This paper investigates the design, fabrication, and characterization of a novel micromixer that uses a simple spatial Tesla valve design to achieve efficient mixing of multiple solutions. The flow characteristics and mixing efficiencies of our Tesla valve micromixer are investigated using a combination of numerical simulations and experiments. The results show that in a wide range of flow rates, viscoelastic solutions with different concentrations can be well mixed in our micromixer. Finally, experiments on the synthesis of chitosan nanoparticles are conducted to verify the practicability of our micromixer. Compared with nanoparticles prepared by conventional magnetic stirring, the size of nanoparticles prepared by micromixing is smaller and the distribution is more uniform. Therefore, our Tesla valve micromixer has significant advantages and implications for mixing chemical and biological reactions.  相似文献   

16.
Surface roughness has been considered as a passive means of enhancing species mixing in electroosmotic flow through microfluidic systems. It is highly desirable to understand the synergetic effect of three-dimensional (3D) roughness and surface heterogeneity on the electrokinetic flow through microchannels. In this study, we developed a three-dimensional finite-volume-based numerical model to simulate electroosmotic transport in a slit microchannel (formed between two parallel plates) with numerous heterogeneous prismatic roughness elements arranged symmetrically and asymmetrically on the microchannel walls. We consider that all 3D prismatic rough elements have the same surface charge or zeta potential, the substrate (the microchannel wall) surface has a different zeta potential. The results showed that the rough channel's geometry and the electroosmotic mobility ratio of the roughness elements' surface to that of the substrate, epsilon(mu), have a dramatic influence on the induced-pressure field, the electroosmotic flow patterns, and the electroosmotic flow rate in the heterogeneous rough microchannels. The associated sample-species transport presents a tidal-wave-like concentration field at the intersection between four neighboring rough elements under low epsilon(mu) values and has a concentration field similar to that of the smooth channels under high epsilon(mu) values.  相似文献   

17.
We developed a confocal microscopic method for a quantitative evaluation of the mixing performance of a three-dimensional microfluidic mixer. We fabricated a microfluidic baker's transformation (MBT) mixer as a three-dimensional passive-type mixer for the efficient mixing of solutions. Although the MBT mixer is one type of ideal mixers, it is hard to evaluate its mixing performance, since the MBT mixer is based on several cycles of complicated three-dimensional microchannel structures. We applied the method developed here to evaluate the mixing of water and a fluorescein isothiocyanate (FITC; diffusion coefficient, 4.9 × 10(-10) m(2) s(-1)) solution by the MBT mixer. This method enables us to capture vertical section images for the fluid distributions of FITC and water at different three-dimensional microchannel structures of the MBT device. These images are in good agreement with those of mixing images based on numerical simulations. The mixing ratio could be calculated by the fluorescence intensity at each pixel of the vertical section image; complete mixing is recognized by a mixing ratio of more than 90%. The mixing ratios are measured at different cycles of the MBT mixer by changing the flow rate; the mixing performance is evaluated by comparisons with the mixing ratio of the straight microchannel without the MBT mixer.  相似文献   

18.
In microfluidics the Reynolds number is small, preventing turbulence as a tool for mixing, while diffusion is that slow that time does not yield an alternative. Mixing in microfluidics therefore must rely on chaotic advection, as well-known from polymer technology practice where on macroscale the high viscosity makes the Reynolds numbers low and diffusion slow. The mapping method is used to analyze and optimize mixing also in microfluidic devices. We investigate passive mixers like the staggered herringbone micromixer (SHM), the barrier embedded micromixer (BEM) and a three-dimensional serpentine channel (3D-SC). Active mixing is obtained via incorporating particles that introduce a hyperbolic flow in e.g. two dimensional serpentine channels. Magnetic beads chains-up in a flow after switching on a magnetic field. Rotating the field creates a physical rotor moving the flow field. The Mason number represents the ratio of viscous forces to the magnetic field strength and its value determines the fate of the rotor: a single, an alternating single and double, or a multiple part chain-rotor results. The type of rotor determines the mixing quality with best results in the alternating case where crossing streamlines introduce chaotic advection. Finally, an active mixing device is proposed that mimics the cilia in nature. The transverse flow induced by their motion indeed enhances mixing at the microscale.  相似文献   

19.
We have developed a three-dimensional passive micromixer based on new mixing principles, fluid twisting and flattening. This micromixer is constructed by repeating two microchannel segments, a “main channel” and a “flattened channel”, which are very different in size and are arranged perpendicularly. At the intersection of these segments the fluid inside the micromixer is twisted and then, in the flattened channel, the diffusion length is greatly reduced, achieving high mixing efficiency. Several types of micromixer were fabricated and the effect of microchannel geometry on mixing performance was evaluated. We also integrated this micromixer with a miniaturized DNA purification device, in which the concentration of the buffer solution could be rapidly changed, to perform DNA purification based on solid-phase extraction.  相似文献   

20.
Poly(vinylidenefluoride)-hexafluoropropylene (PVdF(HFP))-ionic liquid gel electrolytes were prepared using ionic liquids based on 1-(2-hydroxyethyl)-3-methyl imidazolium tetrafluoroborate and 1-(2-hydroxyethyl)-3-methyl imidazolium hexafluorophosphate. A conventional metathesis reaction was used to prepare these ionic liquids, which have high purity and exhibit a liquid state at room temperature. The prepared polymer-ionic liquid gel proved to be a free-standing and rubbery film in which the degree of transparency differed according to the ratio and type of ionic liquid used. TGA and FTIR analyses confirmed that the solvent, N,N-Dimethylacetamide (DMAC), used for mixing PVdF(HFP) polymer with ionic liquid was almost totally removed during the gelling and drying processes. SEM photographs were taken of the surface structure of the PVdF(HFP)-ionic liquid gel in order to evaluate the morphology of the film's surface according to the mixing ratio and the nature of the ionic liquid. The thermal behaviors of PVdF(HFP)-ionic liquid gels were observed to be similar to those of neat ionic liquids through DSC analysis, and the compatibility between the polymer and ionic liquid was investigated by XRD analysis. The ionic conductivities of all the gels were 10(-3)-10(-5) S cm(-1) in a temperature range of 20-70 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号