首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 530 毫秒
1.
Thermal conductivity ϰ of single-crystal (VO)2P2O7 has been studied within the 4–300 K range. A break was found in the ϰ(T) relation about 200 K, in the region of the transition from diffuse antiferromagnetic ordering (200–4 K) to a classical paramagnet (T=200–300 K). In the low-temperature domain (4–200 K), one may expect an additional contribution to ϰ(T) from the magnon component of thermal conductivity. Fiz. Tverd. Tela (St. Petersburg) 40, 2093–2094 (November 1998)  相似文献   

2.
The temperature dependences of the order parameter η(T) for sodium nitrite NaNO2 embedded in porous glasses with average pore diameters of 320 and 20 nm, as well as in artificial opals, have been investigated. It has been demonstrated that the dependence η(T) for sodium nitrite in the porous glass almost coincides with that for the bulk material, whereas this dependence for NaNO2 in opals differs substantially from that observed in the bulk material and from those previously determined for sodium nitrite in porous glasses with average pore diameters of 3 and 7 nm. It has been revealed that the dependence of the order parameter for sodium nitrite in opals exhibits a temperature hysteresis (approximately equal to 8 K). The temperature dependence η(T) has been described using a simple model, which takes into account the nanopore diameter distribution existing in artificial opals.  相似文献   

3.
For poly-p-xylylene + CdS (PPX + CdS) nanocomposite films, the dependences of the photo-conductivity σ ph (T) on the concentration C of CdS nanoparticles, intensity and wavelength of exciting light, and temperature T within 15–300 K are examined. An appreciable photocurrent appears at C ≥ 10 vol %, when a large percolation cluster of CdS nanoparticles is formed. The photocurrent spectrum is compared to the absorption spectrum of the film. The photocurrent I ph (P) increases with the intensity of light flux P in a wavelength range near 435 nm according to the I ph (P) ∼ P n power law, where n < 1. At 15 K, the photoconductivity of films with C ≈ 11.5 and 13.5 vol % is higher than that of a pure CdS film (C = 100 vol %) by factors of ≈100 and ≈30, respectively. For films with C > 11.5 vol %, the σ ph (T) dependence at low T exhibits a metal-like character (σ ph (T) decreases with increasing temperature). Atomic force microscopy is used to examine the surface topography of PPX + CdS films, which is found to be strongly dependent on the concentration of nanoparticles. The dark conductivity and photoconductivity of nanocomposite films arise due to the thermo- and photoexcitation transfer of electrons from the CdS nanoparticles to the PPX matrix with the formation of an electronic double layer at the PPX matrix-large percolation CdS cluster interface, a process that populates the phenyl rings of the adjacent PPX layer with excess electrons. As a result, various mechanisms of electron transfer in the polymer matrix can be realized: Mott’s hopping conduction mechanism with variable-range hopping in the matrix between CdS clusters and the metal-like behavior of the conductivity in the polymer shell of the large cluster at low temperatures. The polymer shell contains excess electrons on the phenyl rings -C6H4- in the composition of anion-resonances -C6H4-.  相似文献   

4.
The magnetic moment M, the magnetic susceptibility χ, and the thermal conductivity of chalcopyrite CuFeS2, which is a zero-gap semiconductor with antiferromagnetic ordering, have been measured in the temperature range 10–310 K. It has been revealed that the quantities χ(T) and M(T) increase anomalously strongly at temperatures below ∼100 K. The temperature dependence M(T) is affected by the magnetic prehistory of the sample. An analysis has demonstrated that the magnetic anomalies are associated with the presence of a system of noninteracting magnetic clusters in the CuFeS2 sample under investigation. The formation of the clusters is most likely caused by the disturbance of the ordered arrangement of Fe and Cu atoms in the metal sublattice of the chalcopyrite, which is also responsible for the phase inhomogeneity of the crystal lattice. The inhomogeneity brings about strong phonon scattering, and, as a result, the temperature dependence of the thermal conductivity coefficient exhibits a behavior characteristic of partially disordered crystals.  相似文献   

5.
The behavior of the thermal conductivity k(T) of bulk faceted fullerite C60 crystals is investigated at temperatures T=8–220 K. The samples are prepared by the gas-transport method from pure C60, containing less than 0.01% impurities. It is found that as the temperature decreases, the thermal conductivity of the crystal increases, reaches a maximum at T=15–20 K, and drops by a factor of ∼2, proportional to the change in the specific heat, on cooling to 8 K. The effective phonon mean free path λ p, estimated from the thermal conductivity and known from the published values of the specific heat of fullerite, is comparable to the lattice constant of the crystal λ pd=1.4 nm at temperatures T>200 K and reaches values λp∼50d at T<15 K, i.e., the maximum phonon ranges are limited by scattering on defects in the volume of the sample in the simple cubic phase. In the range T=25−75 K the observed temperature dependence k(T) can be described by the expression k(T)∼exp(Θ/bT), characteristic for the behavior of the thermal conductivity of perfect nonconducting crystals at temperatures below the Debye temperature Θ (Θ=80 K in fullerite), where umklapp phonon-phonon scattering processes predominate in the volume of the sample. Pis’ma Zh. éksp. Teor. Fiz. 65, No. 8, 651–656 (25 April 1997)  相似文献   

6.
Thermal conductivity κ xx(T) under a field is investigated in d x2 - y2-wave superconductors and isotropic s-wave superconductors by the linear response theory, using a microscopic wave function of the vortex lattice states. To study the origin of the different field dependence of κxx(T) between higher and lower temperature regions, we analyze the spatially-resolved thermal conductivity around a vortex at each temperature, which is related to the spectrum of the local density of states. We also discuss the electric conductivity in the same formulation for a comparison. Received 8 December 2001 and Received in final form 20 March 2002 Published online 6 June 2002  相似文献   

7.
The spectral dependence of the electron-phonon relaxation rate γe−ph(ℏω) in metals is studied in pump-supercontinuum-probe (PSCP) experiments with femtosecond time resolution. Investigation of this spectral dependence, which exhibits a substantial slowing of the relaxation rate γe−ph(ℏω) near the Fermi level E F , using the parametrization γe−ph(ℏω)∝λ〈Ω2〉 (ℏω−E F )2 makes it possible to determine directly the electron-phonon interaction parameter λ〈Ω2〉. The parameter λ〈Ω2〉 for YBa2Cu3O7−δ is analyzed using this method. Pis’ma Zh. éksp. Teor. Fiz. 70, No. 5, 329–332 (10 September 1999)  相似文献   

8.
Measurements of the thermal conductivity (kxx) and the thermal Hall effect (kxy) in high magnetic fields in Y- and Bi-based high-T c superconductors are presented. We describe the experimental technique and test measurements on a simple metal (niobium). In the high-T c superconductors kxx and kxy increase below T c and show a maximum in their temperature dependence. kxx has contributions from phonons and quasiparticle (QP) excitations, whereas kxy is purely electronic. The strong increase of kxy below T c gives direct evidence for a strong enhancement of the QP contribution to the heat current and thus for a strong increase of the QP mean free path. Using kxy and the magnetic field dependence of kxx we separate the electronic thermal conductivity ( k xx el ) of the CuO 2 -planes from the phononic thermal conductivity ( k xx ph ). In YBa2Cu3O 7 - δ k xx el shows a pronounced maximum in the superconducting state. This maximum is much weaker in Bi2Sr2CaCu2O 8 + δ , due to stronger impurity scattering. The maximum of k xx el is strongly suppressed by a magnetic field, which we attribute to the scattering of QPs on vortices. An additional magnetic field independent contribution to the maximum of kxx occurs in YBa2Cu3O 7 - δ , reminiscent of the contribution of the CuO-chains, as determined from the anisotropy in untwined single crystals. Our data analysis reveals that below T c as in the normal state a transport (τ) and a Hall ( ) relaxation time must be distinguished: The inelastic (i.e. temperature dependent) contribution to τ is strongly enhanced in the superconducting state, whereas displays the same temperature dependence as above T c . We determine also the electronic thermal conductivity in the normal state from kxy and the electrical Hall angle. It shows an unusual linear increase with temperature. Received 23 August 2000  相似文献   

9.
Electrical resistivity ρ and Hal coefficient R are measured as a function of the temperature (T = 1.7−310 K) and the magnetic field (up to H = 28 kOe) in zero-gap semiconductor CuFeS2 samples subjected to hydrostatic compression and under various heat-treatment conditions. At low temperatures, anomalies are observed in the kinetic effects related to the presence of ferromagnetic clusters: the magnetoresistance at T = 4.2 K and T = 20.4 K acquires a hysteretic character and thermopower α changes its sign at T < 15 K. The temperature dependence of conduction-electron concentration n in CuFeS2 has a power form in the temperature range T = 14−300 K, which is characteristic of the intrinsic conductivity in zero-gap semiconductors. In CuFeS2, we have n(T) ∝ T 1.2; in isoelectron compound Cu1.13Fe1.22Te2, we have n(T) ∝ T 1.93. Heat treatment is found to affect the intrinsic conductivity of CuFeS2, as the action of hydrostatic compression (carrier concentration changes); that is, the carrier concentration changes. However, a power form of the n(T) and ρ(T) dependences is retained.  相似文献   

10.
The dependence of the thermal conductivity of indium antimonide on temperature (in the range 300–450 K) and hydrostatic pressure (up to 0.4 GPa) has been investigated. It is shown that the phonon thermal conductivity λph obeys the law T ?n (n ≥ 1). Hydrostatic pressure affects the magnitude and temperature dependence of the thermal conductivity of InSb: with an increase in pressure, the thermal conductivity increases, while the parameter n in the dependence λphT ?n decreases.  相似文献   

11.
Models of thermally activated linear and high-field nonlinear conductivity of a dielectric phase in granular metals (nanocomposites), i.e., aggregates of small metallic grains in a dielectric matrix, have been suggested. Given a sufficiently large spread of grain sizes, the temperature dependence of the nanocomposite conductivity should be described by a universal “power-1/2” law: G∝exp[−(T 0/T)1/2]. An analytical expression for T 0 has been obtained. It is found that there are two regimes of nonlinear conductivity in a high electric field, namely, a low-field regime, when both the number and mobility of carriers change with the field strength, and a high-field regime, when only the mobility of carriers is variable. Analytical expressions for the nonlinear conductance in both regimes have been obtained. Zh. éksp. Teor. Fiz. 115, 1484–1496 (April 1999)  相似文献   

12.
The temperature dependence of the Young’s modulus E of paramagnetic lutetium has been studied. It has been shown that an important reason for the dependence E(T) is thermal expansion of the crystal lattice, which also leads to a change in the Debye temperature Θ. The effect of this factor is also revealed in the thermodynamic properties of metals. In particular, we have shown that there is another contribution to variation of the total specific heat of lutetium, associated with the Θ(T) dependence and comparable with the electronic contribution. Fiz. Tverd. Tela (St. Petersburg) 40, 1581–1584 (September 1998)  相似文献   

13.
Experimental data on the thermal conductivity K(T) of natural and highly enriched (99.99%) Ge70 crystals with ground and polished surfaces are analyzed in the temperature interval ∼2–8 K. In all samples, the boundary scattering mechanism predominates in the interval from 2 to 4.0 K. As temperature increases, in highly enriched samples N processes start to contribute to phonon transport and the behavior of K(T) corresponds to viscous Poiseuille flow of a phonon gas. The isotopic scattering mechanism plays a large role in isotopically nonideal samples. Fiz. Tverd. Tela (St. Petersburg) 40, 1604–1607 (September 1998)  相似文献   

14.
Measurements of the temperature dependence of the electrical resistance R(T) below the superconducting transition temperature have been performed at different values of the transport current in HTSC+CuO composites modeling a network of weak S-I-S Josephson junctions (S—superconductor, I—insulator). It has been shown experimentally that the temperature dependence R(T) at different values of the transport current is adequately described by means of the mechanism of thermally activated phase slippage developed by Ambegaokar and Halperin for tunnel structures. Within the framework of this model we have numerically calculated the temperature dependence of the critical current J c(T) as defined by various criteria. Qualitative agreement obtains between the measured and calculated temperature dependences J c(T). Fiz. Tverd. Tela (St. Petersburg) 41, 969–974 (June 1999)  相似文献   

15.
The fluoride-ion conductivity of the nonstoichiometric tysonite phases La0.95(Ba1−x Srx)0.05Fe2.95 (0⩽x⩽1) is investigated by impedance spectroscopy. Electrophysical measurements are performed in the frequency range 5–5×105 Hz and temperature range 300–700 K. A discontinuity is observed in the temperature dependence of the conductivity at T c=410–430 K. The behavior of the temperature dependence of the electrical conductivity is explained within a transport model taking into account the migration of fluoride ions between different inequivalent structural sites. The maximum value of the conductivity at room temperature (293 K) is 2×10−4 Ω−1 cm−1 for the solid solution La0.95Sr0.05F2.95. The fluorine-ion conductivity in La0.95(Ba1−x Srx)0.05F2.95 single crystals is almost an order of magnitude larger than the value for the commercial solid electrolyte La0.992Eu0.008F2.992 (a fluorine-selective membrane) having a tysonite structure. Fiz. Tverd. Tela (St. Petersburg) 40, 658–661 (April 1998)  相似文献   

16.
It is predicted that at room temperatures a hopping mechanism of charge transfer plays a very important role and leads to temperature oscillations of the conductivity σ(T) of a dielectric composite. The dependence of the conductivity σ(ω) on the frequency of an alternating electric field is calculated. The relation obtained can be used to determine, first, the electron relaxation times and, second, and more importantly, the frequency of electron tunneling through the dielectric matrix from measurements of the conductivity in various frequency ranges. Zh. Tekh. Fiz. 69, 31–34 (March 1999)  相似文献   

17.
This paper reports on measurements performed in the temperature range 5–300 K for the thermal conductivity κ and electrical resistivity ρ of high-porosity (cellular pores) biocarbon preforms prepared by pyrolysis (carbonization) of beech wood in an argon flow at carbonization temperatures of 1000 and 2400°C. X-ray structure analysis of the samples has been performed at 300 K. The samples have revealed the presence of nanocrystallites making up the carbon matrices of these biocarbon preforms. Their size has been determined. For samples prepared at T carb = 1000 and 2400°C, the nanocrystallite sizes are found to be in the ranges 12–25 and 28–60 κ(T) are determined for the samples cut along and across the tree growth direction. The thermal conductivity κ increases with increasing carbonization temperature and nanocrystallite size in the carbon matrix of the sample. Thermal conductivity measurements conducted on samples of both types have revealed an unusual temperature dependence of the phonon thermal conductivity for amorphous materials. As the temperature increases from 5 to 300 K, it first increases in proportion to T, to transfer subsequently to ∼T 1.5 scaling. The results obtained are analyzed.  相似文献   

18.
A scan of the superconductor-nonsuperconductor transformation in single crystals of YBa2Cu3O6+x (x≈0.37) is done in two alternative ways, namely, by applying a magnetic field and by reducing the hole concentration through oxygen rearrangement. The in-plane normal-state resistivity ρab obtained in the two cases is quite similar; its temperature dependence can be fitted by a logarithmic law in a temperature range of almost two decades. However, an alternative representation of the temperature dependence of σab=1/ ρ ab by a power law, typical for a 3D material near a metal-insulator transition, is also plausible. The vertical conductivity σc=1/ρc followed a power law, and neither σc(T), nor ρc(T) could be fitted by log T. It follows from the ρc measurements that the transformation at T=0 is split into two transitions: superconductor-normal-metal and normal-metal-insulator. In our samples, they are separated in oxygen content by Δx≈0.025. Pis’ma Zh. éksp. Teor. Fiz. 65, No. 11, 834–839 (10 June 1997) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

19.
The low-temperature thermal and magnetic-resonance properties of a monoclinic KDy(WO4)2 single crystal are investigated. It is established that a structural phase transition takes place at T c=6.38 K. The field dependence of the critical temperature is determined for a magnetic field oriented along the crystallographic a and c axes. The initial part of the H-T phase diagram is plotted for Ha. The prominent features of the structural phase transition are typical of a second-order Jahn-Teller transition, which is not accompanied by any change in the symmetry of the crystal lattice in the low-temperature phase. The behavior of C(T) in a magnetic field shows that the transition goes to an antiferrodistortion phase. An anomalous increase in the relaxation time (by almost an order of magnitude) following a thermal pulse is observed at T>T c(H), owing to the structural instability of the lattice. A theoretical model is proposed for the structural phase transition in a magnetic field, and the magnetic-field dependence of T c is investigated for various directions of the field. Fiz. Tverd. Tela (St. Petersburg) 40, 750–758 (April 1998)  相似文献   

20.
The temperature dependences of the real part R s and the imaginary part X s of the surface impedance Z s =R s +iX s of the superconductor Ba0.6K0.4BiO3 (T c ≃30 K) are measured at a frequency of 9.4 GHz. Its temperature dependence Z s (T) and that of the complex conductivity σ s (T) can be described on the basis of a two-fluid model under two assumptions: The density of superconducting carriers increases linearly, and the relaxation time increases as a power law (∝1/T 5), with decreasing temperature T<T c . This model also describes well the curves Z s (T) and σs (T) recently measured for YBa2Cu3O6.95 and Bi2Sr2CaCu2O8 single crystals. Pis’ma Zh. éksp. Teor. Fiz. 64, No. 11, 783–788 (10 December 1996)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号