首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The space-based multi-band astronomical Variable Object Monitor (SVOM) mission is dedicated to the detection, localization and broad-band study of gamma-ray bursts (GRBs) and other high-energy transient phenomena. The gamma ray monitor (GRM) onboard is designed to observe GRBs up to 5 MeV. With this instrument, one of the key GRB parameters, E peak, can be easily measured in the hard X-ray band. It can achieve a detection rate of 100 GRBs per year which ensures the scientific output of SVOM.  相似文献   

2.
Relative density changes δρ f of sodium, potassium, rubidium, and bismuth on melting-crystallization were studied using monochromatic gamma-ray attenuation technique. The measurement error of density changes was 0.1–0.12 %. A comparison of the obtained results with the known literature data was carried out, and the values of δρ f recommended as reference data were determined.  相似文献   

3.
The duration of gamma ray bursts (GRBs) is usually characterized by time interval t 90, in which the total number of registered counts grows from 5 to 95%. Classes of short and long GRBs were first detected in analyzing the BATSE experiment data from the Compton Gamma Ray Observatory (CGRO); burst duration separation point was found to be t 90lim ~2 s. A group of bursts of intermediate duration was first detected in analyzing the data of the same experiment in 1999 in the interval of ~1 to ~40 s with an average event duration of 〈t 90〉 ~ 3.5 s. The results from analyzing the catalog of gamma-ray burst data selected while ground processing BATSE data (i.e., the catalog of nontriggered events) showed that the intensity of intermediate bursts is lower than that of short and long bursts. Preliminary results from investigating the GBM catalog (onboard the Fermi Space Observatory) and the BAT catalog (onboard the Swift satellite) confirm the detection of events with similar properties.  相似文献   

4.
The internalK-conversion coefficients of the 331, 431, 815 and 933 keV transitions following the decay of La140 have been determined absolutely by the method of comparing internal and external conversion lines measured in a double — focusing beta — ray spectrometers. TheK-internal conversion coefficients of the 4+→2+ 487 keV transition in Ce140 was used to normalize relativeK-electron and gamma-ray intensities for these transitions. The results obtained are:α K (331)=0.04432±0.00471,α K (431)=0.28110±0.02913,α K (815)=0.00396±0.00043,α K (933)=0.00282±0.00031. Multipolarity assignments based on these values are suggested. The 815 keV transition is found to be pure magnetic dipole character in good agreement with the theoretical values calculated bySliv andBand. The 331 and 933 keV transitions are proved to have magnetic dipole character withE2/M1 equal 0.2852±0.0143 and 0.1750±0.0088 respectively. The 431 keV transition was found to have magnetic octupole character. The results obtained are most consistent with the assignment 2+, 4+, 2+, 3+ and 1+ for the 1597, 2084, 2184, 2410 and 2515 keV levels respectively.  相似文献   

5.
We study Chaplygin gas as a candidate for inflation in the context of braneworld inflationary model. We investigate this model in the framework of the Randall–Sundrum type II, considering a original and generalized Chaplygin gas. We use inverse power law potential to examine the behavior of some inflationary spectrum parameters such as the spectral index ns, the ratio r and the running of the scalar spectral index dns/dlnk, our results are in agreement with recent observational data for a particular choice of e-folding number N and parameters space of the model.  相似文献   

6.
FRW universe in Horava-Lifshitz (HL) gravity model filled with a combination of dark matter and dark energy in the form of variable modified Chaplygin gas (VMCG) is considered. The permitted values of the VMCG parameters are determined by the recent astrophysical and cosmological observational data. Here we present the Hubble parameter in terms of the observable parameters Ω d m0, Ω v m c g0, H 0, redshift z and other parameters like α, A, γ and n. From Stern data set (12 points), we have obtained the bounds of the arbitrary parameters by minimizing the χ 2 test. The best-fit values of the parameters are obtained by 66 %, 90 % and 99 % confidence levels. Next due to joint analysis with BAO and CMB observations, we have also obtained the bounds of the parameters (A, γ) by fixing some other parameters α and n. The best fit value of distance modulus μ(z) is obtained for the VMCG model in HL gravity, and it is concluded that our model is perfectly consistent with the union2 sample data.  相似文献   

7.
The theoretical and observational consequences of thermodynamics of open systems which allow matter creation, are investigated in modified f(R, T) (R is the Ricci scalar and T is the trace of energy-momentum tensor) theory of gravity within the framework of a flat Friedmann-Robertson-Walker line element. The simplest model f(R, T)=R+2f(T) with “gamma-law” equation of state p = (γ?1)ρ is assumed to obtain the exact solution. A power-law expansion model is proposed by considering the natural phenomenological particle creation rate ψ = 3β n H, where β is a pure number of the order of unity, n the particle number density and H is the Hubble parameter. A Big Rip singularity is observed for γ<0 describing phantom cosmology. The accelerated expansion of the Universe is driven by the particle creation. The density parameter shows the negative curvature of the Universe due to particle creation. The entropy increases with the evolution of the Universe. Some kinematics tests such as lookback time, luminosity distance, proper distance, angular diameter versus redshift are discussed in detail to observe the role of particle creation in early and late time evolution of the Universe.  相似文献   

8.
We focus on the behaviours of small field of an arctangent potential form, in Randall–Sundrum II braneworld. Within this framework, there is only one brane with positive tension while the second membrane is sent to infinity, and the configuration the model allows to localize the gravity on the curvature of the bulk. In that context, we found that inflationary observables (n s, r, and dn s/dlnk) depend only on the e-folding number N. From the power perturbation value P R (k) given by the latest observational measurements, we evaluate the values of brane tension λ and the energy scale V 0, and we have shown that the various inflationary perturbation parameters are widely consistent with the recent Planck data for a suitable choice of value of the number N. Concerning the reheating phase, we found a large value of the temperature T re ~ 5 × 1014 GeV.  相似文献   

9.
The parameters of plasma disturbances at altitudes 660 and 840 km, measured by the instruments onboard the French DEMETER satellite and the US DMSP satellites passing through the magnetic flux tube footed at the region of intense modification of the F 2 ionospheric layer by the high-power HF radio waves of the Sura heating facility, are presented. The formation of artificial enhanced-density plasma ducts in the outer ionosphere is observed experimentally. Conditions facilitating the formation of such ducts are pointed out.  相似文献   

10.
The gamma-ray relative intensities from transitions in Hf180 following the 5.5 hour Hf180m decay have been measured using a bent-crystal gamma-ray diffraction monochromator and a least-squares fitting technique. From these measurements it was possible to deduce a value for the internal conversion coefficient for the 93.3-keV transition of α T 93 =4.91±0.23. From previous measurements of conversion electron intensities byEdwards andBoehm and our gamma-ray relative intensities, internal conversion coefficients for all transitions except the 57.5-keV transition were obtained. These coefficients agree well with the previous determinations byEdwards andBoehm, however, our measurements have improved precision, particularly in the case of 501.3-keV transition. The present measurements of α K for the 215.3-, 332.5-and 443.8-keVE2 transitions are 11% lower than theoretical values while αK for 93.3 keV E2 transition agrees closely with the theoretical value. These results are in close agreement with the previous measurements ofEdwards andBoehm. The present experimental αK for the 501-keV transition agrees closely with the theoretical αK for an E3 multipolarity.  相似文献   

11.
We propose a generalised de Sitter scale factor for the cosmology of early and late time universe, including single scalar field is called as inflaton. This form of scale factor has a free parameter q is called as nonextensivity parameter. When q = 1, the scale factor is de Sitter. This scale factor is an intermediate form between power-law and de Sitter. We study cosmology of such families. We show that both kinds of dark components, dark energy and dark matter simultaneously are described by this family of solutions. As a motivated idea, we investigate inflation in the framework of q-de Sitter. We consider three types of scenarios for inflation. In a single inflation scenario, we observe that, inflation ended without any specific ending inflation ?end, the spectral index and the associated running of the spectral index are ns ? 1 ~ ?2??, αs ≡ 0. To end the inflation: we should have \(q=\frac {3}{4}\). We deduce that the inflation ends when the evolution of the scale factor is a(t) = e3/4(t). With this scale factor there is no need to specify ?end. As an alternative to have inflation with ending point, We will study q-inflation model in the context of warm inflation. We propose two forms of damping term Γ. In the first case when Γ = Γ0, we show the scale invariant spectrum, (Harrison-Zeldovich spectrum, i.e. ns = 1) may be approximately presented by (\(q=\frac {9}{10},~~N=70\)). Also there is a range of values of R and ns which is compatible with the BICEP2 data where \(q=\frac {9}{10}\). In case Γ = Γ1V(?), it is observed that small values of a number of e-folds are assured for small values of q parameter. Also in this case, the scale-invariant spectrum may be represented by \((q,N) = (\frac {9}{10},70)\). For \(q=\frac {9}{10}\) a range of values of R and ns is compatible with the BICEP2 data. Consequently, the proposal of q-de Sitter is consistent with observational data. We observe that the non-extensivity parameter q plays a significant role in inflationary scenario.  相似文献   

12.
In this paper, we investigate the late-time cosmic acceleration in mimetic f(RT) gravity with the Lagrange multiplier and potential in a Universe containing, besides radiation and dark energy, a self-interacting (collisional) matter. We obtain through the modified Friedmann equations the main equation that can describe the cosmological evolution. Then, with several models from \(\mathcal {Q}(z)\) and the well-known particular model f(RT), we perform an analysis of the late-time evolution. We examine the behavior of the Hubble parameter, the dark energy equation of state and the total effective equation of state and in each case we compare the resulting picture with the non-collisional matter (assumed as dust) and also with the collisional matter in mimetic f(RT) gravity. The results obtained are in good agreement with the observational data and show that in the presence of the collisional matter the dark energy oscillations in mimetic f(RT) gravity can be damped.  相似文献   

13.
The effect of metallic nano-particles (MNPs) on the electrostatic potential of a disordered 2D dielectric media is considered. The disorder in the media is assumed to be white-noise Coulomb impurities with normal distribution. To realize the correlations between the MNPs we have used the Ising model with an artificial temperature T that controls the number of MNPs as well as their correlations. In the T → 0 limit, one retrieves the Gaussian free field (GFF), and in the finite temperature the problem is equivalent to a GFF in iso-potential islands. The problem is argued to be equivalent to a scale-invariant random surface with some critical exponents which vary with T and correspondingly are correlation-dependent. Two type of observables have been considered: local and global quantities. We have observed that the MNPs soften the random potential and reduce its statistical fluctuations. This softening is observed in the local as well as the geometrical quantities. The correlation function of the electrostatic and its total variance are observed to be logarithmic just like the GFF, i.e. the roughness exponent remains zero for all temperatures, whereas the proportionality constants scale with T ? T c . The fractal dimension of iso-potential lines (D f ), the exponent of the distribution function of the gyration radius (τ r ), and the loop lengths (τ l ), and also the exponent of the loop Green function x l change in terms of T ? T c in a power-law fashion, with some critical exponents reported in the text. Importantly we have observed that D f (T) ? D f (T c ) ~ 1/√ξ(T), in which ξ(T) is the spin correlation length in the Ising model.  相似文献   

14.
In this paper, we perform cosmological-model-independent tests for the distance-duality (DD) relation η(z)=D L(1+z)?2/D A by combining the angular diameter distance D A(or comoving distances D c ) with the luminosity distance D L. The D A are provided by two galaxy clusters samples compiled by De Filippis et al. (the elliptical β model), Bonamente et al. (the spherical β model), the D c are obtained from Hubble parameter data and D L are given from the Union2.1 supernovae (SNe) Ia compilation. We employ two methods, i.e., method A: binning the SNe Ia data within the range Δz=|z?z SNe|<0.005, and method B: reconstructing the D L(z) by smoothing the noise of Union2.1 data set over redshift with the Gaussian smoothing function, to obtain D L associated with the redshits of the observed D A or D c. Four parameterizations for η(z), i.e., η(z)=1+η 0 z, η(z)=1+η 0 z/(1+z), η(z)=1+η 0 z/(1+z)2 and η(z)=1?η 0 ln(1+z), are adopted for the DD relation. We find that DD relation is consistent with the present observational data, and the results we obtained are not sensitive to the method and parameterization.  相似文献   

15.
Many studies have shown that either the nearby astrophysical source or dark matter(DM)annihilation/decay can be used to explain the excess of high energy cosmic ray(CR)e~±,which is detected by many experiments,such as PAMELA and AMS-02.Recently,the dark matter particle explorer(DAMPE)collaboration has reported its first result of the total CR e~±spectrum from 25 Ge V to 4.6 Te V with high precision.In this work,we study the DM annihilation and pulsar interpretations of this result.We show that the leptonic DM annihilation channels toτ~+τ~-,4μ,4τ,and mixed charged lepton final states can well explain the DAMPE e~±spectrum.We also find that the mixed charged leptons channel would lead to a sharp drop structure at~Te V.However,the ordinary DM explanations have been almost excluded by the constraints from the observations of gamma-ray and CMB,unless some exotic DM models are introduced.In the pulsar scenario,we analyze 21 nearby known pulsars and assume that one of them dominantly contributes to the high energy CR e~±spectrum.Involving the constraint from the Fermi-LAT observation of the e~±anisotropy,we find that two pulsars could explain the DAMPE e~±spectrum.Our results show that it is difficult to discriminate between the DM annihilation and single pulsar explanations of high energy e~±with the current DAMPE result.  相似文献   

16.
The present work is based on a parametric reconstruction of the deceleration parameter q(z) in a model for the spatially flat FRW universe filled with dark energy and non-relativistic matter. In cosmology, the parametric reconstruction technique deals with an attempt to build up a model by choosing some specific evolution scenario for a cosmological parameter and then estimate the values of the parameters with the help of different observational datasets. In this paper, we have proposed a logarithmic parametrization of q(z) to probe the evolution history of the universe. Using the type Ia supernova, baryon acoustic oscillation and the cosmic microwave background datasets, the constraints on the arbitrary model parameters \(q_{0}\) and \(q_{1}\) are obtained (within \(1\sigma \) and \(2\sigma \) confidence limits) by \(\chi ^{2}\)-minimization technique. We have then reconstructed the deceleration parameter, the total EoS parameter \(\omega _\mathrm{tot}\), the jerk parameter and have compared the reconstructed results of q(z) with other well-known parametrizations of q(z). We have also shown that two model selection criteria (namely, the Akaike information criterion and Bayesian information criterion) provide a clear indication that our reconstructed model is well consistent with other popular models.  相似文献   

17.
We consider the models of vacuum energy interacting with cold dark matter in this study, in which the coupling can change sigh during the cosmological evolution. We parameterize the running coupling b by the form b(a) = b_0 a + b_e(1-a), where at the earlytime the coupling is given by a constant b_e and today the coupling is described by another constant b_0. We explore six specific models with(i) Q = b(a)H_0ρ_0,(ii) Q = b(a)H_0ρ_(de),(iii) Q = b(a)H_0ρ_c,(iv) Q = b(a)Hρ_0,(v) Q = b(a)Hρ_(de), and(vi) Q = b(a)Hρ_c.The current observational data sets we use to constrain the models include the JLA compilation of type Ia supernova data, the Planck 2015 distance priors data of cosmic microwave background observation, the baryon acoustic oscillations measurements,and the Hubble constant direct measurement. We find that, for all the models, we have b_0 0 and b_e 0 at around the 1σ level,and b_0 and b_e are in extremely strong anti-correlation. Our results show that the coupling changes sign during the evolution at about the 1σ level, i.e., the energy transfer is from dark matter to dark energy when dark matter dominates the universe and the energy transfer is from dark energy to dark matter when dark energy dominates the universe.  相似文献   

18.
All four parameters of the Mie–Lennard-Jones pair interatomic potential have been determined, and the state equation (P) and baric dependences of the lattice properties of an fcc iron are calculated using a previously proposed method. The dependences have been studied for the following properties: Debye temperature; the first, second, and third Gruneisen parameters; isothermal bulk modulus B T and B′(P); isochoric specific heat C v and C v ′(P); isobaric specific heat C p ; coefficient of thermal expansion α p and α p ′(P); specific surface energy σ and σ′(P). Calculations performed along two isotherms (1500 and 3000 K) have shown good agreement with the experimental data. Analytical approximations of the baric dependences for B′(P), α p (P), C p (P), and σ′(P) have been obtained, and it is shown that at P → ∞ the functions B T (P) and σ(P) change linearly, while the functions α p(P) and C p ′(P) tend to zero. The calculated baric dependence of the melting temperature shows good agreement with the experimental data.  相似文献   

19.
P Thakur 《Pramana》2017,88(3):51
Recent observational predictions suggest that our Universe is passing through an accelerating phase in the recent past. This acceleration may be realized with the negatively pressured dark energy. Generalized Chaplygin gas may be suitable to describe the evolution of the Universe as a candidate of unified dark matter energy (UDME) model. Its EoS parameters are constrained using (i) dimensionless age parameter (H 0 t 0) and (ii) the observed Hubble (H(z)?z) data (OHD) + baryon acoustic oscillation (BAO) data + cosmic microwave background (CMB) shift data + supernovae (Union2.1) data. Dimensionless age parameter puts loose bounds on the EoS parameters. Best-fit values of the EoS parameters H 0, A s and α (A s and α are defined in the energy density for generalized Chaplygin gas (GCG) and in EoS) are then determined from OHD + BAO + CMB + Union2.1 data and contours are drawn to obtain their allowed range of values. The present age of the Universe (t 0) and the present Hubble parameter (H 0) have been estimated with 1σ confidence level. Best-fit values of deceleration parameter (q), squared sound speed (\(c_{\mathrm {s}}^{2}\)) and EoS parameter (ω) of this model are then determined. It is seen that GCG satisfactorily accommodates an accelerating phase and structure formation phase.  相似文献   

20.
We consider mass-conserving self-similar solutions for Smoluchowski’s coagulation equation with kernel K(ξ,η)=(ξη) λ with λ∈(0,1/2). It is known that such self-similar solutions g(x) satisfy that x ?1+2λ g(x) is bounded above and below as x→0. In this paper we describe in detail via formal asymptotics the qualitative behavior of a suitably rescaled function h(x)=h λ x ?1+2λ g(x) in the limit λ→0. It turns out that \(h \sim 1+ C x^{\lambda/2} \cos(\sqrt{\lambda} \log x)\) as x→0. As x becomes larger h develops peaks of height 1/λ that are separated by large regions where h is small. Finally, h converges to zero exponentially fast as x→∞. Our analysis is based on different approximations of a nonlocal operator, that reduces the original equation in certain regimes to a system of ODE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号