首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 555 毫秒
1.

Background

Clarithromycin (CLM) is a semi-synthetic macrolide antibiotic with a broad antibacterial spectrum. It has a potent activity against Myc. Pneumonia, Legionella Spp., H. Influenza, and Mor. Catarrhalis. It is also used for prevention and treatment of disseminated M. Avium infections in patients with AIDS. The therapeutic importance and wide use of CLM promotes the growing interest in developing proper methods for its determination in bulk and pharmaceutical formulations.

Results

The present study describes the development and validation of a novel assay that can increase the throughput and reduce the consumption of organic solvents in the charge transfer (CT)-based spectrophotometric determination of CLM. In this assay, the CT reaction between CLM as n-electron donor and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) as a π-electron acceptor was performed in the 96-microwells of an assay plate. The color signals of the CT complex were measured at 450 nm by microwell-plate absorbance reader. The linear range of the assay was 20?850 μg mL?1. The limits of detection and quantitation were 15.5 and 51.2 μg mL?1, respectively. The proposed assay gave very high precisions; the relative standard deviation (RSD) values did not exceed 1.82%.

Conclusions

The assay described herein has a high throughput property that facilitates the processing of large number of samples in a reasonable time. As well, it consumes minimum volumes of organic solvents, thus it significantly reduces the exposures of the analysts to the toxic effects of organic solvents, and reduce the analysis cost by 50-folds. The results demonstrated that the proposed assay has great practical value in the routine analysis of CLM in quality control laboratories.
  相似文献   

2.
采用高能碰撞诱导解离(CID)-负离子模式基质辅助激光解吸离子化-飞行时间质谱技术(MALDI TOF MS)区别efgD(大肠杆菌O152中O抗原基因簇内)编码的β-1,3-葡萄糖转移酶和wfgD(大肠杆菌O77中O抗原基因簇内)编码的α-1,3-甘露糖转移酶酶促反应产物-两个脂寡糖非对应异构体.结果表明:由高能CI...  相似文献   

3.
C-1027 is a potent antitumor antibiotic composed of an apo-protein and a reactive enediyne chromophore. The chromophore consists of four different chemical subunits including an (S)-3-chloro-4,5-dihydroxy-beta-phenylalanine moiety, the biosynthesis of which from l-alpha-tyrosine is catalyzed by six proteins, SgcC, SgcC1, SgcC2, SgcC3, SgcC4, and SgcC5. Biochemical characterization of SgcC3 unveiled the following: (i) SgcC3 is a flavin adenine dinucleotide (FAD)-dependent halogenase; (ii) SgcC3 acts only on the SgcC2 peptidyl carrier protein-tethered substrates; (iii) SgcC3-catalyzed halogenation requires O2 and reduced FAD and either the C-1027 pathway-specific flavin reductase SgcE6 or E. coli flavin reductase (Fre) can support the SgcC3 activity; (iv) SgcC3 also efficiently catalyzes bromination but not fluorination or iodination; (v) SgcC3 can utilize both (S)- and (R)-beta-tyrosyl-S-SgcC2 but not 3-hydroxy-beta-tyrosyl-S-SgcC2 as a substrate. These results establish that SgcC3 catalyzes the third enzymatic transformation during the biosynthesis of the (S)-3-chloro-4,5-dihydroxy-beta-phenylalanine moiety of C-1027 from l-alpha-tyrosine. SgcC3 now represents the second biochemically characterized flavin-dependent halogenase that acts on a carrier protein-tethered substrate. These findings will facilitate the engineering of new C-1027 analogs by combinatorial biosynthesis methods.  相似文献   

4.
C-1027 is a potent antitumor antibiotic composed of an apoprotein (CagA) and a reactive enediyne chromophore. The chromophore has four distinct chemical moieties, including an ( S)-3-chloro-5-hydroxy-beta-tyrosine moiety, the biosynthesis of which from l-alpha-tyrosine requires five proteins: SgcC, SgcC1, SgcC2, SgcC3, and SgcC4; a sixth protein, SgcC5, catalyzes the incorporation of this beta-amino acid moiety into C-1027. Biochemical characterization of SgcC has now revealed that (i) SgcC is a two-component, flavin adenine dinucleotide (FAD)-dependent monooxygenase, (ii) SgcC is only active with SgcC2 (peptidyl carrier protein)-tethered substrates, (iii) SgcC-catalyzed hydroxylation requires O 2 and FADH 2, the latter supplied by the C-1027 pathway-specific flavin reductase SgcE6 or Escherichia coli flavin reductase Fre, and (iv) SgcC efficiently catalyzes regioselective hydroxylation of 3-substituted beta-tyrosyl-S-SgcC2 analogues, including the chloro-, bromo-, iodo-, fluoro-, and methyl-substituted analogues, but does not accept 3-hydroxy-beta-tyrosyl-S-SgcC2 as a substrate. Together with the in vitro data for SgcC4, SgcC1, and SgcC3, the results establish that SgcC catalyzes the hydroxylation of ( S)-3-chloro-beta-tyrosyl-S-SgcC2 as the final step in the biosynthesis of the ( S)-3-chloro-5-hydroxy-beta-tyrosine moiety prior to incorporation into C-1027. SgcC now represents the first biochemically characterized two-component, FAD-dependent monooxygenase that acts on a carrier-protein-tethered aromatic substrate.  相似文献   

5.
Cyclam-based enediynes 1-3 have been synthesized for the first time either by direct bis- or tetra-alkylation of the cyclam or via double alkylation of the 1,8-bis-sulfonyl derivative. The enediyne 1 readily forms a complex with Ni(II), which also lowered the onset temperature for Bergman cyclization of the parent enediyne by 60 °C. In the presence of a co-oxidant, MMPP, the Ni-complex can cleave ds-DNA into the nicked relaxed form at micromolar concentrations.  相似文献   

6.
The biosynthetic gene cluster for the enediyne antitumor antibiotic maduropeptin (MDP) from Actinomadura madurae ATCC 39144 was cloned and sequenced. Cloning of the mdp gene cluster was confirmed by heterologous complementation of enediyne polyketide synthase (PKS) mutants from the C-1027 producer Streptomyces globisporus and the neocarzinostatin producer Streptomyces carzinostaticus using the MDP enediyne PKS and associated genes. Furthermore, MDP was produced, and its apoprotein was isolated and N-terminal sequenced; the encoding gene, mdpA, was found to reside within the cluster. The biosynthesis of MDP is highlighted by two iterative type I PKSs--the enediyne PKS and a 6-methylsalicylic acid PKS; generation of (S)-3-(2-chloro-3-hydroxy-4-methoxyphenyl)-3-hydroxypropionic acid derived from L-alpha-tyrosine; a unique type of enediyne apoprotein; and a convergent biosynthetic approach to the final MDP chromophore. The results demonstrate a platform for engineering new enediynes by combinatorial biosynthesis and establish a unified paradigm for the biosynthesis of enediyne polyketides.  相似文献   

7.
The interactions between a novel enediyne [1-methyl-2-(phenylethynyl)-3-(3-phenylprop-2-ynyl)-3H-benzimidazolium] (1) and various cytosine-containing oligonucleotides were studied using electrospray ionization mass spectrometry (ESI-MS) in a flow injection analysis mode useful for small volumes. This enediyne ligand, developed as a potential alternative to the highly cytotoxic natural enediynes, some of which have been successfully used as anti-tumor agents, has previously been shown to interact with DNA through frank strand scission as well as via the formation of adducts that lead to 2'-deoxycytidine-specific cleavage. Through ESI-MS, the structures of these adducts were examined and a sequence dependence of the 2'-deoxycytidine-specific cleavage was noted. Collisionally activated dissociation of the observed adducts confirmed the strength of the interactions between the enediyne and DNA and supports a direct linkage between the enediyne and the cytosine nucleobase, likely the result of a nucleophilic attack of the phenylethynyl group by the cytosine amine.  相似文献   

8.
Feng L  Zhang A  Kerwin SM 《Organic letters》2006,8(10):1983-1986
[reaction; see text] Aza-enediynes (C,N-dialkynyl imines) undergo thermal aza-Bergman rearrangement to beta-alkynyl acrylonitriles through 2,5-didehydropyridine (2,5-ddp) intermediates. Certain aza-enediynes also undergo an alternative process affording enediynes and fumaronitriles. Studies employing a specifically (l3)C-labeled aza-enediyne show that the conversion to enediyne is second order in aza-enediyne, proceeds by a "head-to-tail" coupling, and affords the (Z)-enediyne.  相似文献   

9.
The enediyne antitumor antibiotic C-1027 chromoprotein is produced by Streptomyces globisporus. The biosynthesis of the (S)-3-chloro-4,5-dihydroxy-beta-phenylalanine moiety (boxed) of the C-1027 chromophore (1) from l-tyrosine (3) and its incorporation into 1 are catalyzed by six enzymes: SgcC, SgcC1, SgcC2, SgcC3, SgcC4, ShcC5. In vivo and in vitro characterization of these enzymes delineated this pathway, unveiling a novel strategy for beta-amino acid modification featuring beta-amino acyl-S-carrier protein intermediates. These findings shed new light into beta-amino acid biosynthesis and present a new opportunity to engineer the C-1027 biosynthetic machinery for the production of novel analogues as exemplified by 20-deschloro-C-1027 (4), 20-deschro-22-deshydroxy-C-1027 (5), and 22-deshydroxy-C-1027 (6).  相似文献   

10.
A short and efficient synthesis of cinnoline-fused cyclic enediyne is reported. Richter cyclization of o-(1,3-butadiynyl)phenyltriazene produced 3-alkynyl-4-bromocinnoline. The Sonogashira coupling of the latter with 5-hexyn-1-ol was employed for the introduction of a second acetylenic moiety. The crucial cyclization step was achieved under Nozaki-Hiyama-Kishi conditions. Cinnoline-fused 10-membered ring enediyne is more reactive than corresponding carbocyclic analog and produces good yield of the Bergman cyclization product upon mild heating. This enediyne induces single-strand dDNA scissions upon incubation at 40 °C.  相似文献   

11.
BACKGROUND: Two deoxysugar glycosyltransferases (GTs), UrdGT1b and UrdGT1c, involved in urdamycin biosynthesis share 91% identical amino acids. However, the two GTs show different specificities for both nucleotide sugar and acceptor substrate. Generally, it is proposed that GTs are two-domain proteins with a nucleotide binding domain and an acceptor substrate site with the catalytic center in an interface cleft between these domains. Our work aimed at finding out the region responsible for determination of substrate specificities of these two urdamycin GTs. RESULTS: A series of 10 chimeric GT genes were constructed consisting of differently sized and positioned portions of urdGT1b and urdGT1c. Gene expression experiments in host strains Streptomyces fradiae Ax and XTC show that nine of 10 chimeric GTs are still functional, with either UrdGT1b- or UrdGT1c-like activity. A 31 amino acid region (aa 52-82) located close to the N-terminus of these enzymes, which differs in 18 residues, was identified to control both sugar donor and acceptor substrate specificity. Only one chimeric gene product of the 10 was not functional. Targeted stepwise alterations of glycine 226 (G226R, G226S, G226SR) were made to reintroduce residues conserved among streptomycete GTs. Alterations G226S and G226R restored a weak activity, whereas G226SR showed an activity comparable with other functional chimeras. CONCLUSIONS: A nucleotide sugar binding motif is present in the C-terminal moiety of UrdGT1b and UrdGT1c from S. fradiae. We could demonstrate that it is an N-terminal section that determines specificity for the nucleotide sugar and also the acceptor substrate. This finding directs the way towards engineering this class of streptomycete enzymes for antibiotic derivatization applications. Amino acids 226 and 227, located outside the putative substrate binding site, might be part of a larger protein structure, perhaps a solvent channel to the catalytic center. Therefore, they could play a role in substrate accessibility to it.  相似文献   

12.
Lin S  Huang T  Horsman GP  Huang SX  Guo X  Shen B 《Organic letters》2012,14(9):2300-2303
The SgcC5 condensation enzyme catalyzes the attachment of SgcC2-tethered (S)-3-chloro-5-hydroxy-β-tyrosine (2) to the enediyne core in C-1027 (1) biosynthesis. It is reported that SgcC5 (i) exhibits high stereospecificity toward the (S)-enantiomers of SgcC2-tethered β-tyrosine and analogues as donors, (ii) prefers the (R)-enantiomers of 1-phenyl-1,2-ethanediol (3) and analogues, mimicking the enediyne core, as acceptors, and (iii) can recognize a variety of donor and acceptor substrates to catalyze their regio- and stereospecific ester bond formations.  相似文献   

13.
Glycosyltransferases (GTs) catalyze the synthesis of the myriad glycoconjugates that are central to life. One of the largest families is GT4, which contains several enzymes of therapeutic significance, exemplified by WaaG and AviGT4. WaaG catalyses a key step in lipopolysaccharide synthesis, while AviGT4, produced by Streptomyces viridochromogenes, contributes to the synthesis of the antibiotic avilamycin A. Here we present the crystal structure of both WaaG and AviGT4. The two enzymes contain two "Rossmann-like" (beta/alpha/beta) domains characteristic of the GT-B fold. Both recognition of the donor substrate and the catalytic machinery is similar to other retaining GTs that display the GT-B fold. Structural information is discussed with respect to the evolution of GTs and the therapeutic significance of the two enzymes.  相似文献   

14.
The Bergman cyclizations of the enediyne and its four N-substituted analogs [(Z)-pent-2-en-4-ynenitrile, 3-azahex-3-en-1,5-diyne, malenotrile, and 3,4-azahex-3-en-1,5-diyne] have been studied using the complete active space self-consistent field and multiconfigurational second-order perturbation theory methods in conjunction with the atomic natural orbital basis sets. The geometries and energies of the reactants, transition states, and products along both the S0 (the ground state) and T1 (the lowest-lying triplet state) potential energy surfaces (PESs) were calculated. The calculated geometries are in good agreement with the available experimental data. The distance between two terminal carbons in enediyne, which was considered as an important parameter governing the Bergman cyclization, was predicted to be 4.319 Å, in agreement with the experimental value of 4.321 Å. Our calculations indicate that the replacements of the terminal C atom(s) or the middle C atom(s) in the CC bond by the N atom(s) increase or decrease the energy barrier values, respectively. There exist stable ring biradical products on the T1 PESs for the five reactions. However, on the S0 PESs the ring biradical products exist only for the reactions of enediyne, (Z)-pent-2-en-4-ynenitrile, and 3-azahex-3-en-1,5-diyne. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

15.
Growing plants with modified cell wall compositions is a promising strategy to improve resistance to pathogens, increase biomass digestibility, and tune other important properties. In order to alter biomass architecture, a detailed knowledge of cell wall structure and biosynthesis is a prerequisite. We report here a glycan array-based assay for the high-throughput identification and characterization of plant cell wall biosynthetic glycosyltransferases (GTs). We demonstrate that different heterologously expressed galactosyl-, fucosyl-, and xylosyltransferases can transfer azido-functionalized sugar nucleotide donors to selected synthetic plant cell wall oligosaccharides on the array and that the transferred monosaccharides can be visualized “on chip” by a 1,3-dipolar cycloaddition reaction with an alkynyl-modified dye. The opportunity to simultaneously screen thousands of combinations of putative GTs, nucleotide sugar donors, and oligosaccharide acceptors will dramatically accelerate plant cell wall biosynthesis research.  相似文献   

16.
Growing plants with modified cell wall compositions is a promising strategy to improve resistance to pathogens, increase biomass digestibility, and tune other important properties. In order to alter biomass architecture, a detailed knowledge of cell wall structure and biosynthesis is a prerequisite. We report here a glycan array‐based assay for the high‐throughput identification and characterization of plant cell wall biosynthetic glycosyltransferases (GTs). We demonstrate that different heterologously expressed galactosyl‐, fucosyl‐, and xylosyltransferases can transfer azido‐functionalized sugar nucleotide donors to selected synthetic plant cell wall oligosaccharides on the array and that the transferred monosaccharides can be visualized “on chip” by a 1,3‐dipolar cycloaddition reaction with an alkynyl‐modified dye. The opportunity to simultaneously screen thousands of combinations of putative GTs, nucleotide sugar donors, and oligosaccharide acceptors will dramatically accelerate plant cell wall biosynthesis research.  相似文献   

17.
The glycan portion of macrolide antibiotics modulates their efficacy. High-level expression of three macrolide GTs and kinetic analysis has revealed a highly selective synthetic "tool kit" with such plasticity that 12 glycan-modified macrolide antibiotics have been readily created. One of these (1-Gal) is enhanced over its parent oleandomycin (1) by "glycotargeting", allowing higher uptake through active internalization by virtue of the attachment of a glycan (Gal) not normally found on 1. Subsequent release of the targeting glycan by endogenous galactosidase activity releases 1.  相似文献   

18.
SYNTHESISOFCF_3-SUBSTITUTEDENEDIYNESSYNTHESISOFCF_3-SUBSTITUTEDENEDIYNES¥FengHONGandChangMingHU(ShanghaiInstituteofOrganicChe...  相似文献   

19.
Four acyclic maleimide‐based enediyne compounds with different hydrophilicity were synthesized through Sonogashira reaction to reveal a self‐delivery antitumor drug platform. As proved by ESR analysis, the enediyne compounds undergo Bergman‐like cyclization and generate diradical intermediates at physiological temperature, which are able to induce DNA‐cleavage through the abstraction of H atoms from the sugar‐phosphate backbones. When the critical aggregation concentration is reached in water, the amphiphilic enediyne compounds self‐assemble into nanoparticles and possess the self‐delivery ability to be facilely admitted by tumor cells, resulting in greatly improved cytotoxicity (IC50 down to 10 μmol·L–1) and much higher tumor cell apoptosis rate (up to 86.6%) in comparison with either the hydrophilic or the lipophilic enediyne compound. The enhanced endocytosis of the amphiphilic enediyne compounds was further confirmed through confocal laser scanning microscopy analysis. The unveiled relationship between the hydrophilicity of enediyne drugs and their therapeutic efficacy will provide a guideline for the design of new self‐delivery drugs employed in medicinal applications.  相似文献   

20.
A series of geminal diethynylethenes (g‐DEEs) with electron‐donating and/or electron‐accepting (D/A) groups were synthesized via a Pd‐catalyzed cross‐coupling sequence. The UV/VIS spectra for donor–acceptor (D–A) functionalized g‐DEEs 5, 8 , and 11 show distinctive absorption trends attributable to intramolecular charge‐transfer (ICT). The bond‐length‐alternation (BLA) index for the cross‐conjugated enediyne framework varies slightly with different terminal substituents as determined by density‐functional theory (DFT) calculations and single‐crystal X‐ray analysis. Ultrafast third‐order optical nonlinearities for the g‐DEEs were measured by the differential optical Kerr effect (DOKE) technique and show that terminal donor–acceptor substitution of g‐DEEs enhances molecular second hyperpolarizabilities (γ) in comparison to donor or acceptor g‐DEEs. A small increase in the two‐photon‐absorption cross‐section (σ(2)) is observed in the series 9 – 11 as a result of increased functionalization. The effects of donor/acceptor substitution on electron delocalization along the cross‐conjugated enediyne structure are evaluated on the basis of natural‐bond‐orbital (NBO) analysis. Solid‐state structures of the four derivatives 3b, 4b, 7 and 8 were characterized by single‐crystal X‐ray structural analysis and show an asymmetric unit cell for one derivative, D–A g‐DEE 8 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号