首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tetrakis(trimethylphosphine) molybdenum nitrosyl hydrido complex trans-Mo(PMe(3))(4)(H)(NO) (2) and the related deuteride complex trans-Mo(PMe(3))(4)(D)(NO) (2a) were prepared from trans-Mo(PMe(3))(4)(Cl)(NO) (1). From (2)H T(1 min) measurements and solid-state (2)H NMR the bond ionicities of 2a could be determined and were found to be 80.0% and 75.3%, respectively, indicating a very polar Mo--D bond. The enhanced hydridicity of 2 is reflected in its very high propensity to undergo hydride transfer reactions. 2 was thus reacted with acetone, acetophenone, and benzophenone to afford the corresponding alkoxide complexes trans-Mo(NO)(PMe(3))(4)(OCHR'R') (R' = R' = Me (3); R' = Me, R' = Ph (4); R' = R' = Ph (5)). The reaction of 2 with CO(2) led to the formation of the formato-O-complex Mo(NO)(OCHO)(PMe(3))(4) (6). The reaction of with HOSO(2)CF(3) produced the anion coordinated complex Mo(NO)(PMe(3))(4)(OSO(2)CF(3)) (7), and the reaction with [H(Et(2)O)(2)][BAr(F)(4)] with an excess of PMe(3) produced the pentakis(trimethylphosphine) coordinated compound [Mo(NO)(PMe(3))(5)][BAr(F)(4)] (8). Imine insertions into the Mo-H bond of 2 were also accomplished. PhCH[double bond, length as m-dash]NPh (N-benzylideneaniline) and C(10)H(7)CH=NPh (N-1-naphthylideneaniline) afforded the amido compounds Mo(NO)(PMe(3))(4)[NR'(CH(2)R')] (R' = R' = Ph (9), R' = Ph, R' = naphthyl (11)). 9 could not be obtained in pure form, however, its structure was assigned by spectroscopic means. At room temperature 11 reacted further to lose one PMe(3) forming 12 (Mo(NO)PMe(3))(3)[N(Ph)CH(2)C(10)H(6))]) with agostic stabilization. In a subsequent step oxidative addition of the agostic naphthyl C-H bond to the molybdenum centre occurred. Then hydrogen migration took place giving the chelate amine complex Mo(NO)(PMe(3))(3)[NH(Ph)(CH(2)C(10)H(6))] (15). The insertion reaction of 2 with C(10)H(7)N=CHPh led to formation of the agostic compound Mo(NO)(PMe(3))(3)[N(CH(2)Ph)(C(10)H(7))] (10). Based on the knowledge of facile formation of agostic compounds the catalytic hydrogenation of C(10)H(7)N=CHPh and PhN=CHC(10)H(7) with 2 (5 mol%) was tested. The best conversion rates were obtained in the presence of an excess of PMe(3), which were 18.4% and 100% for C(10)H(7)N=CHPh and PhN=CHC(10)H(7), respectively.  相似文献   

2.
The nitrile ligands in the platinum(IV) complexes trans-[PtCl4(RCN)2] (R=Me, Et, CH2Ph) and cis/trans-[PtCl4(MeCN)(Me2SO)] are involved in a metalla-Pinner reaction with N-methylbenzohydroxamic acid (N-alkylated form of hydroxamic acid, hydroxamic form; F1), PhC(=O)N(Me)OH, to achieve the imino species [PtCl4[NH=C(R)ON(Me)C(=O)Ph]2 (1-3) and [PtCl4[NH=C(Me)ON(Me)C(=O)Ph](Me2SO)] (7), respectively. Treatment of trans-[PtCl4(RCN)2] (R=Me, Et) and cis/trans-[PtCl4(MeCN)(Me2SO)] with the O-alkylated form of a hydroxamic acid (hydroximic form), i.e. methyl 2,4,6-trimethylbenzohydroximate, 2,4,6-(Me3C6H2)C(OMe)=NOH (F2A), allows the isolation of [PtCl4[NH=C(R)ON=C(OMe)(2,4,6-Me3C6H2)]2] (5, 6) and [PtCl4[NH=C(Me)ON=C(OMe)(2,4,6-Me3C6H2)](Me2SO)] (8), correspondingly. In accord with the latter reaction, the coupling of nitriles in trans-[PtCl4(EtCN)2] with methyl benzohydroximate, PhC(OMe)=NOH (F2B), gives [PtCl4[NH=C(Et)ON=C(OMe)Ph]2] (4). The addition proceeds faster with the hydroximic F2, rather than with the hydroxamic form F1. The complexes 1-8 were characterized by C, H, N elemental analyses, FAB+ mass-spectrometry, IR, 1H and 13C[1H] NMR spectroscopies. The X-ray structure determinations have been performed for both hydroxamic and hydroximic complexes, i.e. 2 and 6, indicating that the imino ligands are mutually trans and they are in the E-configuration.  相似文献   

3.
Addition of LiOHMT (OHMT = O-2,6-dimesitylphenoxide) to W(O)(CH-t-Bu)(PMe(2)Ph)(2)Cl(2) led to WO(CH-t-Bu)Cl(OHMT)(PMe(2)Ph) (4). Subsequent addition of Li(2,5-Me(2)C(4)H(2)N) to 4 yielded yellow W(O)(CH-t-Bu)(OHMT)(Me(2)Pyr)(PMe(2)Ph) (5). Compound 5 is a highly effective catalyst for the Z-selective coupling of selected terminal olefins (at 0.2% loading) to give product in >75% yield with >99% Z configuration. Addition of 2 equiv of B(C(6)F(5))(3) to 5 afforded a catalyst activated at the oxo ligand by B(C(6)F(5))(3). 5·B(C(6)F(5))(3) is a highly active catalyst that produces thermodynamic products (~20% Z).  相似文献   

4.
Reactions of 1,1'-bis(dipheny1phosphino)cobaltocene with Co(PMe(3))(4), Ni(PMe(3))(4), Fe(PMe(3))(4), Ni(COD)(2), FeMe(2)(PMe(3))(4) or NiMe(2)(PMe(3))(3) afford a series of novel dinuclear complexes [((Me(3)P)[lower bond 1 start]Co(η(5)-C(5)H(4)[upper bond 1 start]PPh(2)))((Me(3)P)M[upper bond 1 end](η(5)-C(5)H(4)P[lower bond 1 end]Ph(2)))] (M = Co(1), Ni(2) and Fe(3)) [Co(η(5)-C(5)H(4)[upper bond 1 start]PPh(2))(2)Ni[upper bond 1 end](COD)](4), [Co(η(5)-C(5)H(4)[upper bond 1 start]PPh(2))(2)Ni[upper bond 1 end](PMe(3))(2)] (5) and [((Me(3)P)[lower bond 1 start]Co(Me)(η(5)-C(5)H(4)[upper bond 1 start]PPh(2)))((Me(3)P)Fe[upper bond 1 end](Me)(η(5)-C(5)H(4)P[lower bond 1 end]Ph(2)))] (6). Reactions of 1,1'-bis(dipheny1phosphino)ferrocene with Ni(PMe(3))(4), NiMe(2)(PMe(3))(3), or Co(PMe(3))(4) gives rise to complexes [Fe(η(5)-C(5)H(4)[upper bond 1 start]PPh(2))(2)M[upper bond 1 end](PMe(3))(2)] (M = Ni (7), Co (8)). The complexes 1-8 were spectroscopically investigated and studied by X-ray single crystal diffraction. The possible reaction mechanisms and structural characteristics are discussed. Density functional theory (DFT) calculations strongly support the deductions.  相似文献   

5.
[Na(2)(thf)(4)(P(4)Mes(4))] (1) (Mes = 2,4,6-Me(3)C(6)H(2)) reacts with one equivalent of [NiCl(2)(PEt(3))(2)], [NiCl(2)(PMe(2)Ph)(2)], [PdCl(2)(PBu(n)(3))(2)] or [PdCl(2)(PMe(2)Ph)(2)] to give the corresponding nickel(0) and palladium(0) dimesityldiphosphene complexes [Ni(eta(2)-P(2)Mes(2))(PEt(3))(2)] (2), [Ni(eta(2)-P(2)Mes(2))(PMe(2)Ph)(2)] (3), [Pd(eta(2)-P(2)Mes(2))(PBu(n)(3))(2)] (4) and [Pd(eta(2)-P(2)Mes(2))(PMe(2)Ph)(2)] (5), respectively, via a redox reaction. The molecular structures of the diphosphene complexes 2-5 are described.  相似文献   

6.
The trimethylphosphine complex Ta(PMe(3))(2)Me(3)Cl(2) has been synthesized by addition of PMe(3) to TaMe(3)Cl(2). The molecular structures of both TaMe(3)Cl(2) and Ta(PMe(3))(2)Me(3)Cl(2) have been determined by X-ray diffraction thereby demonstrating that, in the solid state, these complexes respectively adopt trigonal bipyramidal and capped trigonal prismatic geometries.  相似文献   

7.
Substitution of a methyl by a trifluoromethyl moiety in well-known β-ketimines afforded the ligands (Ar)NC(Me)CH(2)CO(CF(3)) (HL(H), Ar = C(6)H(5); HL(Me), A r= 2,6-Me(2)C(6)H(3); HL(iPr), Ar = 2,6-(i)Pr(2)C(6)H(3)). Subsequent complexation to the [MoO(2)](2+) core leads to the formation of novel complexes of general formula [MoO(2)(L(R))(2)] (R = H, 1; R = Me, 2; R = iPr, 3). For reasons of comparison the oxo-imido complex [MoO(N(t)Bu)(L(Me))(2)] (4) has also been synthesized. Complexes 1-4 were investigated in oxygen atom transfer (OAT) reactions using the substrate trimethylphosphine. The respective products after OAT, the reduced Mo(IV) complexes [MoO(PMe(3))(L(R))(2)] (R = H, 5; R = Me, 6; R = iPr, 7) and [Mo(N(t)Bu)(PMe(3))(L(Me))(2)] (8), were isolated. All complexes have been characterized by NMR spectroscopy, and 1-4 also by cyclic voltammetry. A positive shift of the Mo(VI)-Mo(V) reduction wave upon fluorination was observed. Furthermore, molecular structures of complexes 2, 4, 5, and 8 have been determined via single crystal X-ray diffraction analysis. Complex 8 represents a rare example of a Mo(IV) phosphino-imido complex. Kinetic measurements by UV-vis spectroscopy of the OAT reactions from complexes 1-4 to PMe(3) showed them to be more efficient than previously reported nonfluorinated ones, with ligand L' = (Ar)NC(Me)CH(2)CO(CH(3)) [MoO(2)(L')(2)] (9) and [MoO(N(t)Bu)(L')(2)] (10), respectively. Thermodynamic activation parameters ΔH(?) and ΔS(?) of the OAT reactions for complexes 2 and 4 have been determined. The activation enthalpy for the reaction employing 2 is significantly smaller (12.3 kJ/mol) compared to the reaction with the nonfluorinated complex 9 (60.8 kJ/mol). The change of the entropic term ΔS(?) is small. The reaction of the oxo-imido complex 4 to 8 revealed a significant electron-donating contribution of the imido substituent.  相似文献   

8.
The first phosphane complexes of germanium(iv) fluoride, trans-[GeF(4)(PR(3))(2)] (R = Me or Ph) and cis-[GeF(4)(diphosphane)] (diphosphane = R(2)P(CH(2))(2)PR(2), R = Me, Et, Ph or Cy; o-C(6)H(4)(PR(2))(2), R = Me or Ph) have been prepared from [GeF(4)(MeCN)(2)] and the ligands in dry CH(2)Cl(2) and characterised by microanalysis, IR, Raman, (1)H, (19)F{(1)H} and (31)P{(1)H} NMR spectroscopy. The crystal structures of [GeF(4)(diphosphane)] (diphosphane = Ph(2)P(CH(2))(2)PPh(2) and o-C(6)H(4)(PMe(2))(2)) have been determined and show the expected cis octahedral geometries. In anhydrous CH(2)Cl(2) solution the complexes are slowly converted into the corresponding phosphane oxide adducts by dry O(2). The apparently contradictory literature on the reaction of GeCl(4) with phosphanes is clarified. The complexes trans-[GeCl(4)(AsR(3))(2)] (R = Me or Et) are obtained from GeCl(4) and AsR(3) either without solvent or in CH(2)Cl(2), and the structures of trans-[GeCl(4)(AsEt(3))(2)] and Et(3)AsCl(2) determined. Unexpectedly, the complexes of GeF(4) with arsane ligands are very unstable and have not been isolated in a pure state. The behaviour of the germanium(iv) halides towards phosphane and arsane ligands are compared with the corresponding silicon(iv) and tin(iv) systems.  相似文献   

9.
Cationic tungsten(V) methylidynes [L4W(X)[triple bond]CH]+[B(C6F5)4]- [L = PMe3, 0.5dmpe (dmpe = Me2PCH2CH2PMe2), X = Cl, OSO2CF3] have been prepared in high yield by a one-electron oxidation of the neutral tungsten(IV) methylidynes L4W(X)[triple bond]CH with [Ph3C]+[B(C6F5)4]-. The ease and reversibility of the one-electron oxidation of L4W(X)[triple bond]CH were demonstrated by cyclic voltammetry in tetrahydrofuran (E1/2 is approximately -0.68 to -0.91 V vs Fc). The paramagnetic d1 (S = 1/2) complexes were characterized in solution by electron spin resonance (g = 2.023-2.048, quintets due to coupling to 31P) and NMR spectroscopy and Evans magnetic susceptibility measurements (mu = 2.0-2.1 muB). Single-crystal X-ray diffraction showed that the cationic methylidynes are structurally similar to the neutral precursor methylidynes. In addition, the neutral (PMe3)4W(Cl)[triple bond]CH was deprotonated with a strong base at the trimethylphosphine ligand to afford (PMe3)3(Me2PCH2)W[triple bond]CH, a tungsten(IV) methylidyne complex that features a (dimethylphosphino)methyl ligand.  相似文献   

10.
Reaction of [Ln(CH(2)SiMe(3))(3)(thf)(2)] (Ln=Y, Yb, and Lu) with one equivalent of Me(2)Si(C(5)Me(4)H)NHR' (R'=Ph, 2,4,6-Me(3)C(6)H(2), tBu) affords straightforwardly the corresponding half-sandwich rare-earth metal alkyl complexes [{Me(2)Si(C(5)Me(4))(NR')}Ln(CH(2)SiMe(3))(thf)(n)] (1: Ln = Y, R' = Ph, n=2; 2: Ln = Y, R' = C(6)H(2)Me(3)-2,4,6, n=1; 3: Ln = Y, R' = tBu, n=1; 4: Ln = Yb, R' = Ph, n=2; 5: Ln = Lu, R' = Ph, n=2) in high yields. These complexes, especially the yttrium complexes 1-3, serve as excellent catalyst precursors for the catalytic addition of various primary and secondary amines to carbodiimides, efficiently yielding a series of guanidine derivatives with a wide range of substituents on the nitrogen atoms. Functional groups such as C[triple chemical bond]N, C[triple chemical bond]CH, and aromatic C--X (X: F, Cl, Br, I) bonds can survive the catalytic reaction conditions. A primary amino group can be distinguished from a secondary one by the catalyst system, and therefore, the reaction of 1,2,3,4-tetrahydro-5-aminoisoquinoline with iPrN==C==NiPr can be achieved stepwise first at the primary amino group to selectively give the monoguanidine 38, and then at the cyclic secondary amino unit to give the biguanidine 39. Some key reaction intermediates or true catalyst species, such as the amido complexes [{Me(2)Si(C(5)Me(4))(NPh)}Y(NEt(2))(thf)(2)] (40) and [{Me(2)Si(C(5)Me(4))(NPh)}Y(NHC(6)H(4)Br-4)(thf)(2)] (42), and the guanidinate complexes [{Me(2)Si(C(5)Me(4))(NPh)}Y{iPrNC(NEt(2))(NiPr)}(thf)] (41) and [{Me(2)Si(C(5)Me(4))(NPh)}Y{iPrN}C(NC(6)H(4)Br-4)(NHiPr)}(thf)] (44) have been isolated and structurally characterized. Reactivity studies on these complexes suggest that the present catalytic formation of a guanidine compound proceeds mechanistically through nucleophilic addition of an amido species, formed by acid-base reaction between a rare-earth metal alkyl bond and an amine N--H bond, to a carbodiimide, followed by amine protonolysis of the resultant guanidinate species.  相似文献   

11.
The chiral monodentate phosphine PhP[(C(5)Me(4))(2)] is readily obtained by oxidation of the lithium complex Li(2)[PhP(C(5)Me(4))(2)] with I(2), which couples the two cyclopentadienyl groups to form a five-membered heterocyclic ring. The steric and electronic properties of PhP[(C(5)Me(4))(2)] have been evaluated by X-ray diffraction and IR spectroscopic studies on a variety of derivatives, including Ph[(C(5)Me(4))(2)]PE (E = S, Se), Cp*MCl(4)[P[(C(5)Me(4))(2)]Ph] (M = Mo, Ta), Ir[P[(C(5)Me(4))(2)]Ph](2)(CO)Cl, and CpFe(CO)[PhP[(C(5)Me(4))(2)]]Me. For comparison purposes, derivatives of the related phospholane ligand PhP[Me(2)C(4)H(6)] have also been investigated, including Ph[Me(2)C(4)H(6)]PS, Ir[Ph[Me(2)C(4)H(6)]](2)(CO)Cl, Ir[Ph[Me(2)C(4)H(6)]](2)(CO)Me, Ir[PPh[Me(2)C(4)H(6)]](COD)(Cl), and Pd[P[Me(2)C(4)H(6)]Ph][eta(2)-C(6)H(4)C(H)(Me)NMe(2)]Cl. The steric and electronic properties of PhP[(C(5)Me(4))(2)] are determined to be intermediate between those of PPh(2)Me and PPh(3). Thus, the crystallographic cone angles increase in the sequence PPh(2)Me (134.5 degrees) < PhP[(C(5)Me(4))(2)] (140.2 degrees) < PPh(3) (148.2 degrees), while the electron donating abilities decrease in the sequence PPh(2)Me > PhP[(C(5)Me(4))(2)] > PPh(3). Finally, PhP[(C(5)Me(4))(2)] has a smaller cone angle and is less electron donating than the structurally similar phosphine, PhP[Me(2)C(4)H(6)].  相似文献   

12.
The diphosphinoketenimine ligand in the neutral complexes fac-[MnI(CO)(3){(PPh(2))(2)C=C=NR}] (1 a: R = Ph; 1 b: R = p-tolyl) undergoes nucleophilic attack by MeLi and nBuMgCl yielding, after hydrolysis, the diphosphinoenamine-containing complexes fac-[MnI(CO)(3){(PPh(2))(2)C=C(R')NHR}] (3 a,b: R' = Me; 4 a,b: R' = nBu). Complex 1 a reacts under the same conditions with H(2)C=C=CHMgBr to afford fac-[MnI(CO)(3){(PPh(2))(2)C=C(CH(2)CC[triple chemical bond]CH)NHR}] (5 a), which contains a terminal alkyne group on the alpha-carbon atom of the diphosphinoenamine ligand. The cationic complexes fac-[Mn(CO)(4){(PPh(2))(2)C=C=NR}](+) (6) react with H(2)C=C=CHMgBr to afford diphosphinomethanide derivatives bearing three different types of functional groups, depending upon the substituent on the nitrogen atom of the ketenimine: cumulene in fac-[Mn(CO)(4){(PPh(2))(2)C--C(CH=C=CH(2))=N-xylyl}] (7 d), internal alkyne in fac-[Mn(CO)(4){(PPh(2))(2)C--C(C[triple chemical bond]CCH(3))=NtBu}] (8), and quinoline in 9 (R = Ph), whose formation implies an unusual cyclization process. Protonation of 7 d, 8, and 9 with HBF(4) occurs at the nitrogen atom to give the cationic derivatives 10 d, 11, and 12, respectively, which contain the corresponding functionalized diphosphine ligands. Irradiation of 3 a,b and 4 a,b with Vis/UV light makes it possible to isolate the free ligands (PPh(2))(2)C=C(R')NHR (13 a,b and 14 a,b), completing the metal-assisted synthesis of these novel functionalized diphosphines. Irradiation of 12 with Vis/UV light generates free phosphinoquinoline ligand 15, which readily affords a complex 16 containing 15 as a P,N-chelating ligand when treated with [PdCl(2)(NCMe)(2)], thus demonstrating its coordination capability.  相似文献   

13.
Ar-B(OH)2 (1a: Ar = C6H4OMe-4, 1b: Ar = C6H3Me2-2,6) react immediately with Rh(OC6H4Me-4)(PMe3)3 (2) in 5 : 1 molar ratio at room temperature to generate [Rh(PMe3)4]+[B5O6Ar4]- (3a: Ar = C6H4OMe-4, 3b: Ar = C6H3Me2-2,6). p-Cresol (92%/Rh), anisole (80%/Rh) and H2O (364%/Rh) are formed from 1a and 2. The reaction of 1a with 2 for 24 h produces [Rh(PMe3)4]+[B5O6(OH)4]- (4) as a yellow solid. This is attributed to hydrolytic dearylation of once formed 3a because the direct reaction of 3a with excess H2O forms 4. An equimolar reaction of 2 with phenylboroxine (PhBO)3 causes transfer of the 4-methylphenoxo ligand from rhodium to boron to produce [Rh(PMe3)4]+[B3O3Ph3(OC6H4Me-4)]- (5). Arylboronic acids 1a and 1b react with Rh(OC6H4Me-4)(PR3)3 (6: R = Et, 8: R = Ph) and with Rh(OC6H4Me-4)(cod)(PR3) (11: R = iPr, 12: R = Ph) to form [Rh(PR3)4]+[B5O6Ar4]- (7a: R = Et, Ar = C6H4OMe-4, 7b: R = Et, Ar = C6H3Me2-2,6, 9a: R = Ph, Ar = C6H3Me2-2,6) and [Rh(cod)(PR3)(L)]+[B5O6Ar4]- (13b: R = iPr, L = acetone, Ar = C6H3Me2-2,6, 14a: R = Ph, L = PPh3, Ar = C6H4OMe-4, 14b: R = Ph, L = PPh3, Ar = C6H3Me2-2,6), respectively. Hydrolysis of 14a yields [Rh(cod)(PPh3)2]+[B5O6(OH)4]- (15) quantitatively.  相似文献   

14.
The metathesis reaction of anhydrous EuCl(3) with sodium salt of bulky β-diketiminato NaL (L = [N(2, 4, 6- Me(3)C(6)H(2))C(Me)](2)CH(-), L(2, 4, 6-Me3); [N(2,6-(i)Pr(2)C(6)H(3))C(Me)](2)CH(-), L(2, 6-ipr2) and [(2, 6-(i)Pr(2)C(6)H(3))NC(Me)CHC(Me)N(C(6)H(5))](-), L(2, 6-ipr2)(Ph)) in THF at 60 °C afforded the corresponding Eu(II) complexes: Eu(II)(L(2, 4, 6-Me3))(2)(THF) (1), Eu(II)(L(2, 6-ipr2))(2) (2) and Eu(II)(L(2, 6-ipr2)(Ph))(2) (5) with the formations of dimers (L(2, 4, 6-Me3))(2) (3) and (L(2, 6-ipr2))(2) (4) for the former two reactions and proligand L(2, 6-ipr2)(Ph)H (6) for the latter one. Compounds 1-6 were confirmed by an X-ray crystal structure analysis. The central metal Eu(II) in 1 is coordinated by two monoanionic L(2, 4, 6-Me3) ligands and one THF molecule in a trigonal bipyramid. The Eu(II) in each of 2 and 5 is ligated by two monoanionic ligands to form a tetrahedral geometry. The BVS (Bond Valence Sum) calculation indicates the oxidation state of Eu in all the three complexes is 2+ (2.12 for 1, 1.86 for 2 and 1.99 for 5). The isolation of dimers of (L(2, 4, 6-Me3))(2) and L(2, 6-ipr2))(2) and proligand L(2, 6-ipr2)(Ph)H demonstrates that the reducing agent in the present reduction of a Eu(III) ion to a Eu(II) ion might be the (L(2, 4, 6-Me3))(-), (L(2, 6-ipr2))(-) and (L(2, 6-ipr2)(Ph))(-), respectively. The possible mechanism for the reduction pathway is presented.  相似文献   

15.
The reaction of the imido precursor [V(NAr)Cl(2)](n)() (1) (Ar = 2,6-i-Pr(2)C(6)H(3)) with 3 equiv of PMe(2)Ph yields the monomeric complex [V(=NAr)Cl(2)(PMe(2)Ph)(2)] (2). Reacting 1 with 1.5 equiv of dmpe or 1 equiv of dppm affords the dimeric complexes [V(=NAr)Cl(2)(dmpe)](2)(mu-P,P'-dmpe) (3) and [V(=NAr)Cl(2)(dppm)](2) (4), respectively. Complexes 2-4 have been fully characterized by spectroscopic methods, magnetism studies, and X-ray crystallography.  相似文献   

16.
A family of new coordination vanadium(IV) compounds supported by a terminal or bridged aryl imido ligand are reported. Reaction of V(NMe(2))(4) with anilines ArNH(2), where Ar = 2,6-i-Pr(2)-C(6)H(3), 2,6-Me(2)-C(6)H(3), Ph, 2,6-Cl(2)-C(6)H(3), and C(6)F(5), afforded the diamagnetic imido-bridged complexes [V(NAr)(NMe(2))(2)](2) (1a-e). Chlorination of 1a-e with trimethylchlorosilane afforded complexes 2a-e formulated as [V(=NAr)Cl(2)(NHMe(2))(x)()](n)(). One-pot reaction of V(NMe(2))(4) with ArNH(2) in the presence of an excess of trimethylchlorosilane gave the five-coordinate compound [V(=NAr)Cl(2)(NHMe(2))(2)] (3a-e). Reaction of 3a-e with pyridine, bipyridine (bipy), or N,N,N',N'-tetramethylethylenediamine (tmeda) gave respectively the six-coordinate tris- or bis(pyridine) adducts [V(=NAr)Cl(2)(Py)(3)] (4a-e) or [V(=NAr)Cl(2)(Py)(2)(NHMe(2))] (5a), bipyridine complexes [V(=NAr)Cl(2)(bipy)(NHMe(2))] (5a-e) and [V(=NAr)Cl(2)(bipy)(Py)] (9a), and tmeda adduct [V(=NAr)Cl(2)(tmeda)(NHMe(2))] (10a). Moreover, five-coordinate complexes free of NHMe(2) ligands, such as [V(=NAr)Cl(2)(Py)(2)] (5a), [V(=NAr)Cl(2)(bipy)] (8a), and [V(=NAr)Cl(2)(tmeda)] (11a), were directly prepared starting from precursors 2a-e. All compounds were totally characterized by spectroscopic methods (IR, (1)H NMR for diamagnetic complexes, and EPR for paramagnetic complexes), elemental analysis, magnetism, and single-crystal X-ray diffraction studies for 1b, 3a, 3d, 4b, 4d, 7c, 10a, and 11a.  相似文献   

17.
Addition of primary amines to N-[2-(diphenylphosphanyl)benzoyloxy]succinimide affords 2-diphenylphosphanylbenzamides, Ph2PC6H4C(O)NHR (R = C(CH3)3, 3; R = H, 4; R = CH2CH2CH3, 5; R = CH(CH3)2, 6). Addition of NiCl(eta3-CH2C6H5)(PMe3) to the deprotonated potassium salts of the amides and subsequent treatment of two equivalents of B(C6F5)3 to the resulting products furnishes eta3-benzyl zwitterionic nickel(II) complexes, [Ph2PC6H4C(O)NR-kappa2N,P]Ni(eta3-CH2C6H5) (R = C6H5, 9; R = C(CH3)3, 10; R = H, 11; R = CH2CH2CH3, 12; R = CH(CH3)2, 13). Solid structures of 9, 11, 13 and the intermediate eta1-benzyl nickel(II) complexes, [Ph2PC6H4C(O)NR-kappa2N,P]Ni(eta1-CH2C6H5)(PMe3) (R = C6H5, 7; R = C(CH3)3, 8) were determined by X-ray crystallography. When ethylene is added to the eta3-benzyl zwitterionic nickel(II) complexes, butene is obtained by the complexes 9-12 but complex 13 provides very high molecular-weight branched polyethylene (Mw, approximately 1300000) with excellent activity (up to 5200 kg mol-1 h-1 at 100 psi gauge).  相似文献   

18.
Amide and lithium aryloxide gallates [Li(+){RGaPh(3)}(-)] (R = NMe(2), O-2,6-Me(2)C(6)H(3)) react with the μ(3)-alkylidyne oxoderivative ligand [{Ti(η(5)-C(5)Me(5))(μ-O)}(3)(μ(3)-CH)] (1) to afford the gallium-lithium-titanium cubane complexes [{Ph(3)Ga(μ-R)Li}{Ti(η(5)-C(5)Me(5))(μ-O)}(3)(μ(3)-CH)] [R = NMe(2) (3), O-2,6-Me(2)C(6)H(3) (4)]. The same complexes can be obtained by treatment of the [Ph(3)Ga(μ(3)-O)(3){Ti(η(5)-C(5)Me(5))}(3)(μ(3)-CH)] (2) adduct with the corresponding lithium amide or aryloxide, respectively. Complex 3 evolves with formation of 5 as a solvent-separated ion pair constituted by the lithium dicubane cationic species [Li{(μ(3)-O)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-CH)}(2)](+) together with the anionic [(GaPh(3))(2)(μ-NMe(2))](-) unit. On the other hand, the reaction of 1 with Li(p-MeC(6)H(4)) and GaPh(3) leads to the complex [Li{(μ(3)-O)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-CH)}(2)][GaLi(p-MeC(6)H(4))(2)Ph(3)] (6). X-ray diffraction studies were performed on 1, 2, 4, and 5, while trials to obtain crystals of 6 led to characterization of [Li{(μ(3)-O)(3)Ti(3)(η(5)-C(5)Me(5))(3)(μ(3)-CH)}(2)][PhLi(μ-C(6)H(5))(2)Ga(p-MeC(6)H(4))Ph] 6a.  相似文献   

19.
New [CpM(Q)Cl] complexes (M = Rh or Ir, Cp = pentamethylcyclopentadienyl, HQ = 1-phenyl-3-methyl-4R(C=O)-pyrazol-5-one in general, in detail HQ(Me), R = CH(3); HQ(Et), R = CH(2)CH(3); HQ(Piv), R = CH(2)-C(CH(3))(3); HQ(Bn), R = CH(2)-(C(6)H(5)); HQ(S), R = CH-(C(6)H(5))(2)) have been synthesized from the reaction of [CpMCl(2)](2) with the sodium salt, NaQ, of the appropriate HQ proligand. Crystal structure determinations for a representative selection of these [CpM(Q)Cl] compounds show a pseudo-octahedral metal environment with the Q ligand bonded in the O,O'-chelating form. In each case, two enantiomers (S(M)) and (R(M)) arise, differing only in the metal chirality. The reaction of [CpRh(Q(Bn))Cl] with MgCH(3)Br produces only halide exchange with the formation of [CpRh(Q(Bn))Br]. The [CpRh(Q)Cl] complexes react with PPh(3) in dichloromethane yielding the adducts CpRh(Q)Cl/PPh(3) (1:1) which exist in solution in two different isomeric forms. The interaction of [CpRh(Q(Me))Cl] with AgNO(3) in MeCN allows generation of [CpRh(Q(Me))(MeCN)]NO(3).3H(2)O, whereas the reaction of [CpRh(Q(Me))Cl] with AgClO(4) in the same solvent yields both [CpRh(Q(Me))(H(2)O)]ClO(4) and [CpRh(Cl)(H(2)O)(2)]ClO(4); the H(2)O molecules derive from the not-rigorously anhydrous solvents or silver salts.  相似文献   

20.
Lithium aluminates Li[Al(O-2,6-Me(2)C(6)H(3))R'(3)] (R' = Et, Ph) react with the μ(3)-alkylidyne oxoderivative ligands [{Ti(η(5)-C(5)Me(5))(μ-O)}(3)(μ(3)-CR)] [R = H (1), Me (2)] to afford the aluminum-lithium-titanium cubane complexes [{R'(3)Al(μ-O-2,6-Me(2)C(6)H(3))Li}(μ(3)-O)(3){Ti(η(5)-C(5)Me(5))}(3)(μ(3)-CR)] [R = H, R' = Et (5), Ph (7); R = Me, R' = Et (6), Ph (8)]. Complex 7 evolves with the formation of a lithium dicubane species and a Li{Al(μ-O-2,6-Me(2)C(6)H(3))Ph(3)}(2)] unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号