首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A theory of rolling of round bodies in the normal mode with adhesion conditions satisfied on the entire contact area is proposed. This theory refines the classical Coulomb’s theory of rolling in which the rolling moment is directly proportional to the pressing force (e.g., the weight of the rolling body). The rolling moment of cylinders is found to be directly proportional to the pressing force raised to a power of 3/2, and the rolling moment of balls and tori is proportional to the pressing force raised to a power of 4/3. It is shown that the normal mode of uniform rolling can only be provided for a certain ratio of the elastic constants of the materials of the round body and the base forming an ideal pair. The Coulomb problem is solved for the cases of rolling of an elastic cylinder over an elastic half-space, of an elastic ball over an elastic half-space, of an elastic torus over an elastic half-space, and of a cylinder and ball over a tightly stretched membrane. The rolling law is derived for such cases. The rolling friction coefficients, the rolling moment, and the rolling friction force are calculated.  相似文献   

2.
The angular superposition method is used to construct an approximate solution of the contact problem on the compression of an elastic cylinder by two rigid plates. The solution thus obtained has a closed-form analytic expression and can be used in the entire domain of the cylinder cross-section. We analyze the absolute error, which takes the largest value near the points of contact between the plates and the cylinder, where the boundary conditions are discontinuous. According to the von Mises criterion, when moving into the depth of the cylinder from the contact site along the symmetry axis, the second invariant J 2 of the stress deviator tensor first decreases and then, after attaining a minimum, increases and attains the largest value at a small depth, which agrees with Johnson’s photoelastic experiments and Dinnik’s computations. We present the graphs of the displacement and normal stress distributions over the contact site, the dependence of the compressing force on the displacements of rigid plates, and the dependence of the invariant J 2 on the coordinate along the symmetry axis. If 640 computation points are chosen on the cylinder boundary and the Hertz law for the normal pressure on the contact site is used, then the error in the approximate solution near the endpoint of the contact site is approximately 55%, and if the proposed two-parameter normal law is used, then the error is of the order of 4%. On the free lateral surface of the cylinder boundary, we find the critical pointM*, which separates the cylinder contraction and extension parts.The contact problems are the most difficult problems, and their solution is complicated by the discontinuous boundary conditions [1–5]. In [6], the contact problem is solved by the Fourier method, which can be used only for bodies of classical shapes. In such cases, the problem can be reduced to solving coupled integral equations [7]. The interaction between the bandage and a cylindrical body is considered in [2, 6, 7]. In [8], the possibility of using the finite element method is investigated in the case of contact problems for a differential wheel with roughness of the contacting surfaces taken into account. In [9, 10], the method of homogeneous solutions is used to consider contact problems for a finite-dimensional elastic cylinder loaded on its end surfaces. Note that only error estimates are given in the literature cited above; the absolute error over the entire domain of the elastic body is not studied, although this is one of the important characteristics of the obtained approximate solution. A sufficiently complete survey of the literature in the field of contact interactions of elastic bodies is given in [3–5].In what follows, we propose to solve contact problems by the angular superposition method [11]. This method can be used for bodies of nonclassical shapes, which can be multiply connected, and the friction on the contact site can be taken into account. In the present paper, as a first example of applied character, we show how this method can be used in the simplest case. The multiple connectedness and the curvilinearity of the shape of the body, as well as taking into account the friction on the boundary, do not create new essential difficulties in this method.  相似文献   

3.
A scheme of boundary element method for moving contact of two-dimensional elastic bodies using conforming discretization is presented. Both the displacement and the traction boundary conditions are satisfied on the contacting region in the sense of discretization. An algorithm to deal with the moving of the contact boundary on a larger possible contact region is presented. The algorithm is generalized to rolling contact problem as well. Some numerical examples of moving and rolling contact of 2D elastic bodies with or without friction, including the bodies with a hole-type defect, are given to show the effectiveness and the accuracy of the presented schemes. The project supported by the National Natural Science Foundation of China (19772025)  相似文献   

4.
An experimental technique based on the optical method of caustics for the solution of the two-dimensional problem of a narrow contact between two elastic disks was developed. In particular, an elliptical pressure distribution of the Hertz type was assumed, as well as a rectilinear contact form according to Muskhelishvili's solution. The method presents the advantage of yielding directly the contact length, from which the load applied on the disks can be readily evaluated.  相似文献   

5.
In the contact interaction between elastic bodies with friction taken into account, the contact region splits, as a rule, into adhesion and sliding regions {xc[1]}. Contact with adhesion and sliding was first considered by L. A. Galin {xc[2]} in the problem of indentation of a punch with a rectilinear foundation into an elastic half-plane, who obtained an approximate solution of this problem [{xc2}, {xc3}]. Galin's problem was further studied in [{xc4}–{xc9}].  相似文献   

6.
Two mixed elasticity problems of punch indentation into a circular plate placed without clearance in a rigid cylindrical holder with smooth walls are considered. In the first problem, the plate lies without friction on a rigid base, and in the second problem, the plate is rigidly fixed to the base. The problems are solved by a method that was developed for bodies of finite dimensions and is based on the properties of closed systems of orthogonal functions. Each of the problems is reduced to two integral equations, namely, a Volterra integral equation of the first kind for the contact pressure function and a Fredholm integral equation of the first kind for the derivatives of the displacement of the plate upper surface outside the punch. The displacement function is sought as the sum of a trigonometric series and a power function with a root singularity. After truncation, the obtained illposed system of linear algebraic equation has a stable solution. A method for solving Volterra integral equations is given. The contact pressure distribution function and the dimensionless indentation force are determined. Examples of calculation of the plate interaction with the plane punch are given. Contact problems were earlier studied for a rectangle and a circular plate with a stress-free end both without taking account of their fixation [1, 2] and with regard for their fixation [3, 4]. The solution method described here was used to study the interaction of elastic hollow cylinder of finite length with a rigid bandage and a rigid insert [5, 6]. Other papers dealing with contact problems for bodies of finite dimensions, in particular, for a circular plate, should also be mentioned. In these papers, the problems under study were solved by the method of homogeneous solutions [7, 8] and by the method of coupled series-equations [9].  相似文献   

7.
This paper considers finite friction contact problems involving an elastic pin and an infinite elastic plate with a circular hole. Using a suitable class of Green's functions, the singular integral equations governing a very general class of conforming contact problems are formulated. In particular, remote plate stresses, pin loads, moments and distributed loading of the pin by conservative body forces are considered. Numerical solutions are presented for different partial slip load cases. In monotonic loading, the dependence of the tractions on the coefficient of friction is strongest when the contact is highly conforming. For less conforming contacts, the tractions are insensitive to an increase in the value of the friction coefficient above a certain threshold. The contact size and peak pressure in monotonic loading are only weakly dependent on the pin load distribution, with center loads leading to slightly higher peak pressure and lower peak shear than distributed loads. In contrast to half-plane cylinder fretting contacts, fretting behavior is quite different depending on whether or not the pin is allowed to rotate freely. If pin rotation is disallowed, the fretting tractions resemble half-plane fretting tractions in the weakly conforming regime but the contact resists sliding in the strongly conforming regime. If pin rotation is allowed, the shear traction behavior resembles planar rolling contacts in that one slip zone is dominant and the peak shear occurs at its edge. In this case, the effects of material dissimilarity in the strongly conforming regime are only secondary and the contact never goes into sliding. Fretting tractions in the forward and reversed load states show shape asymmetry, which persists with continued load cycling. Finally, the governing integro-differential equation for full sliding is derived; in the limiting case of no friction, the same equation governs contacts with center loading and uniform body force loading, resulting in identical pressures when their resultants are equal.  相似文献   

8.
本文研究柔性梁点面斜碰撞问题。用Hertz接触模型处理法向撞击力,分别用Hertz切向接触模型和Coulomb摩擦力模型处理粘滞状态和滑动状态的摩擦力。从精确的应变与位移的关系出发,用绝对节点坐标法建立了柔性梁的动力学方程。为了准确地处理斜碰撞切向运动的复杂状态,提出滑动-粘滞切换的准则,在此基础上,设计了斜碰撞实验,数值对比了法向撞击力和法向速度的时间历程的仿真计算结果与实验结果,验证了Hertz理论在斜碰撞情况下的正确性。另一方面切向速度的实验与理论的结果对照表明滑动-粘滞切换准则的有效性。  相似文献   

9.
Friction and antifriction composite materials of multilayer structure [1] have recently become very popular in the engineering industry. Antifriction materials are widely used in sliding bearings, and friction materials are widely used in brakes. In the first case, the friction forces between the contacting surfaces are negligible, but in the second case, they are rather large. We use two examples of two plane problems from the theory of elasticity concerning the interaction between a die and a base formed by two elastic layers with different mechanical properties, which are rigidly connected with each other and with an undeformable support, to study how the geometric and mechanical parameters of the problem affect the stress-strain state of such a base, both on its surface and at its internal points, and to find the optimal parameters ensuring the required operation resources of the friction units thus modeled. We assume that the die foot is parabola-shaped or plane, the normal and tangential stresses in the contact region are related to each other by the Coulomb law, and the die is subjected to normal and tangential forces. In this case, the die-two-layer base is in the limit equilibtrium, and the die does not rotate in the process of deformation of the layer. In this setting, the problems were studied in [2] by solving the integral equations (IE) by the asymptotic method of large λ (see [3–7], etc.), which permits finding the effective solution only for relatively large thicknesses of layers compared with the dimensions of the contact region. But in real friction units mentioned above, the layers can have rather small relative thicknesses, and the large λ method cannot be used. We note that the other asymptotic methods (e.g., see [3]) efficient in the case of relatively small thicknesses of layers cannot yet be adapted to the case of friction forces in the contact region. In the present paper, we propose to use the collocation method following the scheme given in [8] to solve the corresponding integral equation of the first kind with logarithmic kernel. This method allows one to obtain sufficiently exact solutions practically for all values of the parameters of the problem with relatively small expenditure of the computer time for modern computers. The contact problem for a two-layer base was used in [9] for a close statement of the problem without friction forces in the contact region.  相似文献   

10.
In this work, solution methods for frictional contact problems are extended to the case of moving punches and to the external loading history-dependent system states. To solve the frictional contact problems in the contact area, an iterative method is developed and implemented. Solutions of two-dimensional problems are constructed using the boundary element method. Numerical analysis is aimed at the quantitative study of effects such as the interaction of contact pressure and friction forces, estimates of the friction force differences due to the differences in the choice of local basis for the calculation of normal pressure and friction forces, and evaluation of the effects of complex loading (rotation of the rigid punch after its preliminary penetration into the solid). We find that, for the same definition of the friction force, different initial approximations lead to the same solution. At the same time, the friction forces defined either as projections onto the common tangent plane or as projections onto the plane tangent to the punch can differ quite substantially. Similar conclusions are derived for the solutions corresponding to single or multiple loading steps. The work relies on the variational principle for the solution of contact problems and numerical algorithms developed for the problems with one-sided constraints. The variational principle was first applied by Signorini [1] to the determination of the stress-strain state in a linearly deformed body in a rigid smooth shell. The modern view of the problem and its generalizations to the frictional problems and some other problems involving unilateral constraints in given in the monograph [2]. Finite difference and finite element methods in application to the problems with unilateral constraints are described in [3]. Analytical solution methods are developed in the monographs [4–6].  相似文献   

11.
We study a three-dimensional contact problem on the indentation of an elliptic punch into a face of a linearly elastic wedge. The wedge is characterized by two parameters of elasticity and its edge is subjected to the action of an additional concentrated force. The other face wedge is free from stresses. The problem is reduced to an integral equation for the contact pressure. An asymptotic solution of this equation is obtained which is effective for a given contact region fairly remote from the edge. Calculations are performed that allow one to evaluate the effect of a force applied outside the contact region on the contact pressure distribution. The problem under study is a generalization of L. A. Galin’s problem on a force applied outside a circular punch on an elastic half-space [1, 2]. In a special case of a wedge with an opening angle of 180° and zero contact ellipse eccentricity, the obtained asymptotic relation coincides with the expansion of Galin’s exact solution in a series. Problems of indentation of an elliptic punch into a spatial wedge with the face not loaded outside the contact region have been studied previously. For example, the paper [3] dealt with the case of a known contact region (asymptotic method) and the paper [4] considered the case of an unknown contact region (numerical method). The solution of Galin’s problem allowed the authors of [2] to reduce the contact problem on the interaction of several punches applied to a half-space to a system of Fredholm integral equations of the second kind (Andreikin-Panasyuk method). A topical direction in contact mechanics is the model of discrete contact as well as related problems on the interaction of several punches [2, 5–8]. The interaction of several punches applied to a face of a wedge can be treated in a similar manner and an asymptotic solution can be obtained for the case where a concentrated force is applied at an arbitrary point of this face beyond the contact region rather than on the edge.  相似文献   

12.
The transient wear process at contact frictional interface of two elastic bodies in relative steady motion induces evolution of shape of the interface. A steady wear state may be reached with uniform wear rate and fixed contact surface shape. In this paper, the optimal contact shape is studied by formulating several classes of shape optimization problems, namely minimization of generalized wear volume rate, friction dissipation power and wear dissipation rate occurring in two bodies. The wear rule was assumed as a nonlinear dependence of wear rate on friction traction and relative sliding velocity, similar to the Archard rule. The wear parameters of two bodies may be different. It was demonstrated that different optimal contact shapes are generated depending on objective functional and wear parameters. When the uniform wear rate is generated at contact sliding surfaces, the steady state is reached. It was shown that in the steady state the wear parameters of two bodies cannot be independent of each other. The solution of nonlinear programming problem was provided by the iterative numerical procedure. It was assumed that the relative sliding velocity between contacting bodies results from translation and rotation of two bodies. In general, both regular and singular regimes of wear rate and pressure distribution may occur. The illustrative examples of drum brake, translating punch and rotating annular punch (disc brake) provide the distribution of contact pressure and wear rate for regular and singular cases associated with the optimality conditions. It is shown that minimization of the generalized wear dissipation rate provides solutions assuring existence of steady wear states.  相似文献   

13.
Quarter space problems have many useful applications wherever an edge is involved, and solution to the related contact problem requires extension to the classical Hertz theory. However, theoretical exploration of such a problem is limited, due to the complexity of the involved boundary conditions. The present study proposes a novel numerical approach to compute the elastic field of two quarter spaces, joined so that their top surfaces occupy the same plane, and indented by a rigid sphere with friction. In view of the equivalent inclusion method, the joined quarter spaces may be converted to a homogeneous half space with properly established eigenstrains, which are analyzed by our recent half space-inclusion solution using a three-dimensional fast Fourier transform algorithm. Benchmarked with finite element analysis the present method of solution demonstrates both accuracy and efficiency. A number of interesting parametric studies are also provided to illustrate the effects of material combinations, contact location and friction coefficient showing the deviation of the solution from Hertz theory.  相似文献   

14.
Galin’s classical work (PMM J Appl Math Mech 9:413–424, 1945) on the contact of a rigid flat-ended indenter with an elastic half-plane with partial slip was the first successful attempt to take into account friction in the problem of normal contact. As Galin was unable to find an exact solution of the formulated problem, the problem of contact with partial slip of a rigid punch with an elastic half-plane was challenged by many researchers. At the same time Galin’s seminal work stimulated development of solutions for other contact problems with friction that feature different punch geometries and different material responses. This paper presents an overview of the developments in the area of elastic contact with partial slip. In the spirit of Galin’s work the focus is placed on contributions with substantial analytical merit.   相似文献   

15.
16.
A physics-based modeling approach for partial slip behavior of a spherical contact is proposed. In this approach, elastic and elastic–plastic normal preload and preload-dependent friction coefficient models are integrated into the Cattaneo–Mindlin partial slip solution. Partial slip responses to cyclic tangential loading (fretting loops) obtained by this approach are favorably compared with experiments and finite element results from the literature. In addition to load-deformation curves, tangential stiffness of the contact and energy dissipation per fretting cycle predictions of the models are also provided. Finally, the critical assumptions of elastically similar bodies, smooth contact surface and negligible adhesion, and limitations of this physics-based modeling approach are discussed.  相似文献   

17.
The contact behavior for geological materials, such as reservoir shale rock, is simulated using the finite element method by considering a nano-indenter tip indenting into a geomaterial obeying the Mohr-Coulomb failure criterion. The deformation and slip at the micro-scale along the shear direction in grain-to-grain contact follows the Coulomb frictional/sliding failure criterion, while the linear elastic force-displacement law is enforced in the direction normal to the contact surface. A series of simulations are performed to study the effect of cohesion, friction angle, and tensile strength on the contact response. For a material with very high cohesion and frictionless contact, the indented geomaterial behaves almost purely as an elastic medium. In this case, the indentation process converges to the classic Hertz grain-to-grain spherical contact model. For a material with extremely low cohesion, the geomaterial behaves like cohesionless granular material at the micro-scale. For materials with finite cohesion values, such as shales, the force-displacement responses are analyzed and reported. This simulation is compared to micro-indentation tests using a spherical indenter tip conducted on preserved samples of Woodford shale.  相似文献   

18.
This paper presents a comprehensive computational model for predicting the nonlinear response of frictional viscoelastic contact systems under thermo-mechanical loading and experience geometrical nonlinearity. The nonlinear viscoelastic constitutive model is expressed by an integral form of a creep function, whose elastic and time-dependent properties change with stresses and temperatures. The thermo-viscoelastic behavior of the contacting bodies is assumed to follow a class of thermo-rheologically complex materials. An incremental-recursive formula for solving the nonlinear viscoelastic integral equation is derived. Such formula necessitates data storage only from the previous time step. The contact problem as a variational inequality constrained model is handled using the Lagrange multiplier method for exact satisfaction of the inequality contact constraints. A local nonlinear friction law is adopted to model friction at the contact interface. The material and geometrical nonlinearities are modeled in the framework of the total Lagrangian formulation. The developed model is verified using available benchmarks. The effectiveness and accuracy of the developed computational model is validated by solving two thermo-mechanical contact problems with different natures. Moreover, obtained results show that the mechanical properties and the class of thermo-rheological behavior of the contacting bodies as well as the coefficient of friction have significant effects on the contact response of nonlinear thermo-viscoelastic materials.  相似文献   

19.
The rolling contact problem involving circular cylinders is at the heart of numerous industrial processes, and critical to any elastohydrodynamic lubrication analysis is an accurate knowledge of the associated contact pressure for the static dry problem. In a recent article [1] the authors have obtained new horizontal pressure distributions, both exact and approximate for various problems involving the symmetrical contact of circular elastic cylinders. In [1] it is assumed that only the circumferential horizontal displacement is prescribed in the contact region while the vertical circumferential displacement is left arbitrary and is assumed to take on whatever value is predicted by the deformation. The advantage of this assumption is that the problem reduces to a single singular integral equation which by transformations can be simplified to an integral equation involving the standard finite Hilbert transform. Here we consider the more general displacement boundary value problem within the contact region, and to be specific we examine the problem with zero vertical circumferential displacement and prescribed horizontal circumferential displacement. The solution of this problem involves two coupled singular integral equations for the horizontal and vertical pressure distributions. Basic equations and some approximate analytical solutions are obtained for symmetrical contact of circular elastic cylinders by both parallel plates and circular cylinders which are either rigid or elastic. Numerical results for the approximate analytical solutions are given for contact by rigid parallel plates and rigid circular cylinders.  相似文献   

20.
The fundamental problem of elastic–plastic normally loaded contact between a deformable sphere and a rigid flat is analyzed under perfect slip and full stick conditions for a wide range of the sphere mechanical properties. The effect of these properties on failure inception is investigated by finding the critical interference and normal loading as well as the location of the first plastic yield or brittle failure. The analysis is based on the analytical Hertz solution under frictionless slip condition and on a numerical solution under stick condition. The failure inception is determined by using either the von Mises criterion of plastic yield or the maximum tensile stress criterion of brittle failure. For small values of the Poisson’s ratio the behavior in stick, when high tangential stresses prevail in the contact interface, is much different than in slip. For high values of the Poisson’s ratio the tangential stresses under stick condition are low and the behavior of the failure inception in stick and slip is similar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号