首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bellomo A 《Talanta》1970,17(11):1109-1114
The factors influencing the formation of metal hexacyano-ferrate(II) complexes have been examined and the experimental conditions leading to formation of M(2)Fe(CN)(6), and K(2)M(3)[Fe(CN)(6)](2) have been studied, where M is Cu(II) or Zn(II); Ag(I) yields Ag(4)Fe(CN)(6). and KAg(3)Fe(CN)(6) and Pb(II) yields only Pb(2)Fe(CN)(6). Measurements made at constant ionic strength obtained by addition of K(2)SO(4) show how the potassium ion affects the stabilization of the complexes. The free energy changes and K(sp) values for the complexes have been calculated.  相似文献   

2.
Zaporozhets O  Gawer O  Sukhan V 《Talanta》1998,46(6):1387-1394
The modified silica gel with 1,10-phenanthroline adsorbed was obtained. The adsorption from aqueous solutions onto loaded silica gel of Fe(II), Cu(II) and Ag(I) and their complexes was studied. The loaded silica gel was applied to Fe(II), Cu(II) and Ag(I) reflectance spectroscopy determinations in water (detection limits 0.08, 0.03 and 0.01 ppm respectively). Visual test scales for Fe, Cu and Ag ion determinations in water were worked out.  相似文献   

3.
Mn(II), Fe(III), Ni(II) and Cu(II) complexes of the thiosemicarbazones of α-hydroxy-β-naphthaldehyde have been isolated. Ni(II) complex is diamagnetic, Cu(II) is planar involving metal-metal interactions, Mn(II) complex (μeff = 3.86B.M) has been assigned a planar structure with S = 3/2 while Fe(III) complex is five coordinated with S = 3/2.  相似文献   

4.
A new dispersive liquid-liquid microextraction (DLLME) method for preconcentration of trace quantities of Fe(II) and Cu(II) followed by their spectrophotometric determination has been developed. For the extraction, an appropriate mixture of ethanol (the disperser solvent) and carbon tetrachloride (the extraction solvent) was injected rapidly into the water sample containing Fe(II) and Cu(II) after formation of complexes with diethyldithiocarbamate. Mean centering (MC) of ratio spectra has been used for simultaneous determination of Fe(II) and Cu(II). Linear range of the method is 1.0–100 ng/mL for Fe(II) and 0.3–100 ng/mL for Cu(II), the detection limit is 0.53 ng/mL and 0.14 ng/mL Cu(II), resp. The interference effect of some anions and cations is reported. The method was applied to the determination of Fe(II) and Cu(II) in well water samples.  相似文献   

5.
New metal complexes of Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) with salicylidine-2-aminobenzimidazole (SABI) are synthesized and their physicochemical properties are investigated using elemental and thermal analyses, IR, conductometric, solid reflectance and magnetic susceptibility measurements. The base reacts with these metal ions to give 1:1 (Metal:SABI) complexes; in cases of Fe(III), Co(II), Cu(II), Zn(II) and Cd(II) ions; and 1:2 (Metal:SABI) complexes; in case of Ni(II) ion. The conductance data reveal that Fe(III) complex is 2:1 electrolyte, Co(II) is 1:2 electrolyte, Cu(II), Zn(II) and Cd(II) complexes are 1:1 electrolytes while Ni(II) is non-electrolyte. IR spectra showed that the ligand is coordinated to the metal ions in a terdentate mannar with O, N, N donor sites of the phenloic -OH, azomethine -N and benzimidazole -N3. Magnetic and solid reflectance spectra are used to infer the coordinating capacity of the ligand and the geometrical structure of these complexes. The thermal decomposition of the complexes is studied and indicates that not only the coordinated and/or crystallization water is lost but also that the decomposition of the ligand from the complexes is necessary to interpret the successive mass loss. Different thermodynamic activation parameters are also reported, using Coats-Redfern method. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO(2)(II) complexes with the ligand 2-tert-butylaminomethylpyridine-6-carboxylic acid methylester (HL(2)) have been prepared and characterized by elemental analyses, molar conductance, magnetic moment, thermal analysis and spectral data. 1:1 M:HL(2) complexes, with the general formula [M(HL(2))X(2)].nH(2)O (where M = Co(II) (X = Cl, n = 0), Ni(II) (X = Cl, n = 3), Cu(II) (grey colour, X = AcO, n = 1), Cu(II) (yellow colour, X = Cl, n = 0) and Zn(II) (X = Br, n = 0). In addition, the Fe(III) and UO(2)(II) complexes of the type 1:2 M:HL(2) and with the formulae [Fe(L(2))(2)]Cl and [UO(2)(HL(2))(2)](NO(3))(2) are prepared. From the IR data, it is seen that HL(2) ligand behaves as a terdentate ligand coordinated to the metal ions via the pyridyl N, carboxylate O and protonated NH group; except the Fe(III) complex, it coordinates via the deprotonated NH group. This is supported by the molar conductance data, which show that all the complexes are non-electrolytes, while the Fe(III) and UO(2)(II) complexes are 1:1 electrolytes. IR and H1-NMR spectral studies suggest a similar behaviour of the Zn(II) complex in solid and solution states. From the solid reflectance spectral data and magnetic moment measurements, the complexes have a trigonal bipyramidal (Co(II), Ni(II), Cu(II) and Zn(II) complexes) and octahedral (Fe(III), UO(2)(II) complexes) geometrical structures. The thermal behaviour of the complexes is studied and the different dynamic parameters are calculated applying Coats-Redfern equation.  相似文献   

7.
A rapid, simple, and selective method was developed for the determination of etodolac. The method depends on complexation of etodolac with copper (II) acetate and iron (III) chloride followed by extraction of complexes with dichloromethane and then measuring the extracted complexes spectrophotometrically at 684 and 385 nm in case of Cu (II) or Fe (III), respectively. Different factors affecting the reaction, such as pH, reagent concentration, and time, were studied. By use of Job's method of continuous variation, the molar ratio method, and elemental analysis, the stoichiometry of the reaction was found to be in the ratio of 1:2 and 1:3, metal:drug in the case of Cu (II) and Fe (III), respectively. The method obeys Beer's law in a concentration range of 2.00-9.00 and 0.50-2.00 mg/mL in case of Cu (II) and Fe (III), respectively. The stability of the complexes formed was also studied, and the reaction products were isolated for further investigation. The complexes have apparent molar absorptivities of about 32.14 +/- 0.97 and 168.32 +/- 1.12 for Cu (II) and Fe (III), respectively. The suggested procedures were successfully applied to the analysis of pure etodolac and its pharmaceutical formulations. The validity of the procedures was further ascertained by the method of standard additions, and the results were compared with other reported spectrophotometric methods and showed no significant difference in accuracy and precision.  相似文献   

8.
A device has been developed for the measurement of copper(II) ions (Cu++) in aqueous medium. The device reported here is an electrochemical transistor that consists of two platinum electrodes separated by 100-μm spacing and bridged with an anodically grown polycarbazole film. The undoped polycarbazole film is observed to be highly selective for the Cu(II) ions. In a completed device, the conductivity of the polycarbazole film changes on addition of Cu (II)ions. This change in conductivity is attributed to the conformational changes in the polymer phase on occupation of the Cu(II) ions, without affecting electron/proton transfer. The device turns on by adding 2.5×10−6 M Cu(II) ions and reaches a saturation region above a concentration of 10−4 M Cu(II) ions. In this concentration range, the plot of I D vs log[Cu(II)] is linear. The selectivity of the device for other metal ions such as Cu(I), Co(II), Fe(II), Fe(III), Zn(II), and Pb(II) is also studied.  相似文献   

9.
The complexes of Cr(III), Mn(II), Fe(III) and Cu(II) were synthesized with the macrocyclic ligand i.e. 2,3,9,10-tetraketo-1,4,8,11-tetraazacyclotetradecane. The ligand was prepared by the [2 + 2] condensation reaction of diethyloxalate and 1,3-diamino propane. These complexes were found to have the general composition M(L)X3 and M'(L)X2 [where M = Mn(II) and Cu(II), M' = Cr(III) and Fe(III), L = ligand (N4) and X = Cl-, NO3-, 1/2SO4(2-) and [CH3COO-]. The ligand and its transition metal complexes were characterized by the elemental analyses, molar conductance, magnetic susceptibility, mass, IR, electronic, and EPR spectral studies. On the basis of IR, electronic and EPR spectral studies an octahedral geometry has been assigned for Cr(III), Mn(II) and Fe(III) and a tetragonal geometry for Cu(II) complexes.  相似文献   

10.
Abstract

The Schiff base N-2,4-dihydroxybenzal-D-glucosamine (L), and its Fe(III), Co(III), Cu(II) and Zn(II) complexes have been synthesized and characterized. Magnetic moments suggest that all complexes are high-spin. The Cu(II) chelate in DMF solution has a distorted tetrahedral structure, as shown by ESR and electronic spectra. Detailed studies have been made concerning the solution equilibrium of L with transition metal ions. Stabilities of the complexes are in accord with the Irving-Williams series.  相似文献   

11.
The coordination chemistry of chelating silanedithiolato ligands has been investigated on Fe(II), Co(II), Pd(II), Cu(I), and Ag(I). Treatment of M(OAc)(2) (M = Fe, Co, Pd) with cyclotrisilathiane (SSiMe(2))(3) in the presence of Lewis bases resulted in formation of Fe(S(2)SiMe(2))(PMDETA) (1), Fe(S(2)SiMe(2))(Me(3)TACN) (2), Co(S(2)SiMe(2))(PMDETA) (3), and Pd(S(2)SiMe(2))(PEt(3))(2) (4) (PMDETA = N,N,N',N',N' '-pentamethyldiethylenetriamine; Me(3)TACN = 1,4,7-trimethyl-1,4,7-triazacyclononane). The analogous reactions of M(OAc) (M = Cu, Ag) in the presence of PEt(3) gave rise to the dinuclear complexes M(2)[(SSiMe(2))(2)S](PEt(3))(3) [M = Cu (5), Ag (6)]. Complexes were characterized in solution by (1)H, (31)P[(1)H], and (29)Si[(1)H] NMR and in the solid state by single-crystal X-ray diffraction. Mononuclear complexes 1-3 have a four-membered MS(2)Si ring, and these five-coordinate complexes adopt trigonal-bipyramidal (for the PMDETA adducts) or square-pyramidal (for the Me(3)TACN adduct) geometries. In dimer 6, the (SSiMe(2))(2)S(2)(-) silanedithiolato ligand bridges two metal centers, one of which is three-coordinate and the other four-coordinate. The chelating effect of silanedithiolato ligands leads to an increase in the stability of silylated thiolato complexes.  相似文献   

12.
Chromogenic receptors 2 and 3 undergo distinct colour changes from magenta to blue on gradual addition of Cu(II) and can be used as colorimetric probes for spectrophotometric and visual analysis of Cu(II) in the presence of biological metal ions Na(I), K(I), Mg(II), Ca(II), Fe(II), Zn(II) etc. in aqueous solution (methanol-water 1 : 1 v/v). On addition of Cu(II), both 2 and 3 exhibit a bathochromic shift of Delta lambda(max) = 114 nm for 2 and Delta lambda(max)= 150 and 265 nm for receptor 3. The protonation constants and formation constants of Cu(II) complexes of receptors 2 and 3 (at pH 7) and the effect of pH on formation of these complexes has been determined by the combination of UV-vis-pH titrations of receptors 2 and 3 and their Cu(II) complexes. These results and the emergence of only one peak at 610 nm for 2 and two distinct absorption peaks at 715 and 800 nm for 3 on addition of Cu(II) unambiguously point to mono- and di-deprotonation for 2 and 3, respectively.  相似文献   

13.
Cu(II) and Mg(II) have different binding capacity with daunomycin, and have different combination mode with DNA. Selecting these two different metal ions, the influence of them on the binding constant of adriamycin with DNA and the related mechanism has been studied by using absorption and fluorescence spectroscopy. The result showed that Mg(II) has weaker binding capacity with the drug comparing Cu(II), but both Mg(II) and Cu(II) can obviously reduce the binding constant of DNA with the drug. Addition of Cu(II) to the drug-DNA binary system can cause the reduction of fluorescence in the system, but addition of Mg(II) to it can cause the enhancement of fluorescence in some conditions. This show that the influence of Cu(II) and Mg(II) on the binding of the drug with DNA may be by a different mechanism. According to the main function of Mg(II) to bind with the phosphate groups on DNA, it can be deduced that for the interaction of the aglycon portion of the drug into the base pairs of DNA, the electrostatic binding between amine group of the drug with the phosphate group on DNA is a prerequisite.  相似文献   

14.
Paper electrophoresis has been used for uranium(VI) separation from Fe(II), Co(II), Ni(II) and Cu(II). The background electrolyte (0.1M HNO3-NaNO3) at different pH values contains diethyldithiophosphoric acid as complexing agent. A plot of mobility versus pH is used to obtain information on the formation of dithiophosphate complexes and to compute the stability constant of an uranyldiethyldithiophosphate complex.  相似文献   

15.
The new bis(ferrocene)-cyclam macrocycle 1,8-bis(ferrocenylmethyl)-1,4,8,11-tetraazacyclotetradecane, denoted L, has been synthesized. Two Cu(II) complexes with L have been isolated and characterized from X-ray structure determination and electrochemical studies. These two LCu(II) complexes correspond to the type I (ferrocenyl subunits in the same side of the cyclam plane) and type III (ferrocenyl subunits above and below the cyclam plane) isomers. The type I LCu(II) complex was synthesized from L and a Cu(2+) salt, while the type III isomer was obtained by oxidation in air or by comproportionation of the Cu(I) complex. The interconversion between type I and type III LCu(II) complexes is negligible in acetonitrile and slow in dimethyl sulfoxide but fast via an electrochemical reduction-reoxidation cycle. According to UV-vis and electrochemical characterizations, the type III isomer is thermodynamically more stable and the type I isomer is kinetically favored. A type III LNi(II) complex was also isolated and characterized by X-ray diffraction analysis and from electrochemical studies.  相似文献   

16.
The preparation, composition and structure of copper hexacyanoferrates have been investigated. Three methods were used: precipitation, local growth in an aqueous solution, and growth in a gel. Four compounds were obtained, either in powdered form or as single crystals: Cu(II)(2)Fe(II)(CN)(6) . xH(2)O, Cu(II)(3)[Fe(III)(CN)(6)](2) . xH(2)O, Na(2)Cu(II)Fe(II)(CN)(6) . 10H(2)O and K(2)Cu(II)Fe(II)(CN)(6). Powders of Cu(II)(2)Fe(II)(CN)(6) . xH(2)O and Cu(II)(3)[Fe(III) (CN)(6)](2) . xH(2)O are easily prepared by precipitation and can also be obtained by local growth. They crystallise generally with cubic symmetry, in space group Fm3m, and are structurally disordered. The mixed copper hexacyanoferrates of general formulae M(1)(2)Cu(II)Fe(II)(CN)(6) or M(I)Cu(II)Fe(III)(CN)(6) (here M(I) is Na, K) were not obtained by precipitation. The appropriate method was local growth for the preparation of powders of K(2)Cu(II)Fe(II)(CN)(6). Single crystals of Na(2)Cu(II)Fe(II)(CN)(6) were obtained by growth in a gel, and their study using single crystal X-ray diffraction revealed a new monoclinic structure.  相似文献   

17.
Complexes of sulfamethoxydiazine with Cu(II), Zn(II), Ni(II), Cd(II), Cr(III) and Fe(III) have been synthesized and characterized on the basis of conductivity measurements, elemental analyses, UV, IR, 1H?NMR and thermal studies. It is shown that sulfamethoxydiazine behaves as a bidentate ligand, binding the metal ion through the sulfonyl oxygen and sulfonamide nitrogen. In vitro susceptibility tests of these complexes against Escherichia coli, Bacillus subtilis, Proteus vulgaris and Staphylococcus aureus were carried out. The results show that the antibacterial activities of the complexes of Zn(II), Cu(II), Cr(III) and Fe(III) are, in general, stronger than that of sulfamethoxydiazine, while the complexes of Cd(II) and Ni(II) are less active.  相似文献   

18.
Schiff bases of 1,3-dicarbonyl compounds with triamines and their Fe(III), Co(III), Ni(II) and Cu(II) complexes The preparation of new hexadentate ligands obtained by the reaction of cis, cis-1,3,5-triaminocyclohexane (tach) or 1,1,1-tris (aminomethyl)ethane (tame) with an 2-ethoxymethylidene-1,3-dicarbonyl compound as well as their Fe(III), Co(III), Ni(II) and Cu(II) complexes is reported. Fe(III) and Co(III) yield neutral complexes with an octahedral N3O3-coordination sphere, Ni(II) and Cu(II) complexes with a square-planar coordination-sphere. In the later complexes one of the bidentate branches of the ligand is not deprotonated and stays uncoordinated.  相似文献   

19.
A trinuclear [[Ru(II)(bpy)(2)(bpy-terpy)](2)Fe(II)](6+) complex (I) in which a Fe(II)-bis-terpyridine-like centre is covalently linked to two Ru(II)-tris-bipyridine-like moieties by a bridging bipyridine-terpyridine ligand has been synthesised and characterised. Its electrochemical, photophysical and photochemical properties have been investigated in CH(3)CN and compared with those of mononuclear model complexes. The cyclic voltammetry of (I) exhibits, in the positive region, two successive reversible oxidation processes, corresponding to the Fe(III)/Fe(II) and Ru(III)/Ru(II) redox couples. These systems are clearly separated (DeltaE(1/2) = 160 mV), demonstrating the lack of an electronic connection between the two subunits. The two oxidized forms of the complex, [[Ru(II)(bpy)(2)(bpy-terpy)](2)Fe(III)](7+) and [[Ru(III)(bpy)(2)(terpy-bpy)](2)Fe(III)](9+), obtained after two successive exhaustive electrolyses, are stable. (I) is poorly luminescent, indicating that the covalent linkage of the Ru(II)-tris-bipyridine to the Fe(II)-bis-terpyridine subunit leads to a strong quenching of the Ru(II)* excited state by energy transfer to the Fe(II) centre. Luminescence lifetime experiments show that the process occurs within 6 ns. The nature of the energy transfer process is discussed and an intramolecular energy exchange is proposed as a preferable deactivation pathway. Nevertheless this energy transfer can be efficiently quenched by an electron transfer process in the presence of a large excess of the 4-bromophenyl diazonium cation, playing the role of a sacrificial oxidant. Finally complete photoinduced oxidation of (I) has been performed by continuous photolysis experiments in the presence of a large excess of this sacrificial oxidant. The comparison with a mixture of the corresponding mononuclear model complexes has been made.  相似文献   

20.
A new hydrazone ligand, HL, was prepared by the reaction of 7-chloro-4-hydrazinoquinoline with o-hydroxybenzaldehyde. The ligand behaves as monoprotic bidentate. This was accounted for as the ligand contains a phenolic group and its hydrogen atom is reluctant to be replaced by a metal ion. The ligand reacted with Cu(II), Ni(II), Co(II), Fe(III), and UO2(II) ions to yield mononuclear complexes. In the case of Fe(III) ion two complexes, mono- and binuclear complexes, were obtained in the absence and presence of LiOH, respectively. Also, mixed ligand complexes were obtained from the reaction of the metal cations Cu(II), Ni(II) and Fe(III) with the ligand (HL) and 8-hydroxyquinoline (8-OHqu) in the presence of LiOH, in the molar ratio 1:1:1:1. It is clear that 8-OHqu behaves as monoprotic bidentate ligand in such mixed ligand complexes. The ligand, HL, and its metal complexes were characterized by elemental analyses, IR, UV-vis, mass, and 1H NMR spectra, as well as magnetic moment, conductance measurements, and thermal analyses. All complexes have octahedral configurations except Cu(II) complex which has an extra square-planar geometry, while Ni(II) mixed complex has also formed a tetrahedral configuration and UO2(II) complex which formed a favorable pentagonal biprymidial geometry. Magnetic moment of the binuclear Fe(III) complex is quite low compared to calculated value for two iron ions complex and thus shows antiferromagnetic interactions between the two adjacent ferric ions. The HL and metal complexes were tested against one stain Gram positive bacteria (Staphylococcus aureus), Gram negative bacteria (Escherichia coli), and fungi (Candida albicans). The tested compounds exhibited higher antibacterial acivities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号