首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
N掺杂锐钛矿TiO2光学性能的第一性原理研究   总被引:1,自引:0,他引:1       下载免费PDF全文
彭丽萍  徐凌  尹建武 《物理学报》2007,56(3):1585-1589
用平面波赝势方法(PWP)计算了N掺杂锐钛矿型TiO2前后的光学特性,即介电函数虚部ε2(ω),光学吸收系数I(ω)和反射率R(ω). 并从能带结构上解释了为什么掺N后锐钛矿型TiO2的光学谱在2.93,3.56和3.97eV处相对掺杂前会出现3个峰值的原因. 从光谱图上分析得出,掺杂后TiO2要发生红移现象,实验现象证实了这一结果. 关键词: N掺杂 2')" href="#">锐钛矿型TiO2 光学性能 第一性原理  相似文献   

2.
3.
4.
The magneto-optical properties of solids are theoretically described by the circular dichroism (CD) and birefringence coefficient (θ). Using the Su-Schrieffer-Heeger (SSH) model in conjunction with the local field method, the optical dielectric tensor, CD and θ of the simple cubic phase of the La@C82 and C82 crystals are calculated. The results obtained from the La@C82 and C82 crystals are compared with those of the C70 and C60 crystals. It is shown that La@C82 has a richer optical spectrum than C82, C70 and C60. In the La@C82 crystal, absorption bands are shown by spectrum in the 0.58 to 7.0?eV region with sharp structures in each band which indicate the localized molecular structure coupled with long-range crystalline order. Results show that the circular dichroism and birefringence coefficient of the La@C82 crystal due to a single spin localized on the C82 cage are very larger than those of the C60, C70 and C82 crystals. Also, results show that the circular dichroism and birefringence coefficient of the C82 crystal are similar to those of the C60 and C70 crystals.  相似文献   

5.
The structural parameters, elastic, electronic, and optical properties of hexagonal BiAlO3 were investigated by the density functional theory. The calculated structural parameters are in good agreement with previous calculation and experimental data. The structural stability of BiAlO3 has been confirmed by calculation of the elastic constants. The energy band structure, density of states, and Mulliken charge populations were obtained. BiAlO3 presents an indirect band gap of 3.28 eV. Furthermore, the optical properties were calculated and analyzed. It is shown that BiAlO3 is a promising dielectric material.  相似文献   

6.
First-principles calculations were performed to investigate the structural, elastic, electronic, optical and thermoelectric properties of the Zintl-phase Ae3AlAs3 (Ae = Sr, Ba) using two complementary approaches based on density functional theory. The pseudopotential plane-wave method was used to explore the structural and elastic properties whereas the full-potential linearised augmented plane wave approach was used to study the structural, electronic, optical and thermoelectric properties. The calculated structural parameters are in good consistency with the corresponding measured ones. The single-crystal and polycrystalline elastic constants and related properties were examined in details. The electronic properties, including energy band dispersions, density of states and charge-carrier effective masses, were computed using Tran-Blaha modified Becke-Johnson functional for the exchange-correlation potential. It is found that both studied compounds are direct band gap semiconductors. Frequency-dependence of the linear optical functions were predicted for a wide photon energy range up to 15 eV. Charge carrier concentration and temperature dependences of the basic parameters of the thermoelectric properties were explored using the semi-classical Boltzmann transport model. Our calculations unveil that the studied compounds are characterised by a high thermopower for both carriers, especially the p-type conduction is more favourable.  相似文献   

7.
We determine the structural, electronic, elastic and optical properties of fluoro-perovskite KZnF3 using the full potential linear augmented plane wave approach (FP-LAPW) based on the density functional theory (DFT). The exchange-correlation potential is treated by the local density approximation (LDA) and the generalized gradient approximation (GGA). The calculated structural parameters are in good agreement with the available data. We have obtained an indirect band gap. The effect of the pressure on the band gaps is investigated. We evaluate the elastic constants (Cij), elastic moduli and the Debye temperature. The imaginary and the real parts of the dielectric function ε(ω) and some optical constants are also calculated.  相似文献   

8.
The electronic energy-band structure, density of states (DOS), and optical properties of AgBO3 in the paraelectric cubic phase have been studied by using density functional theory within the local density approximation for exchange-correlation for the first time. The band structure shows a band gap of 1.533 eV (AgNbO3)and 1.537 eV (AgTaO3)at (M-⌈)point in the Brillouin zone. The optical spectra of AgBO3 in the photon energy range up to 30 eV are investigated under the scissor approximation. The real and imaginary parts of the dielectric function and — thus the optical constants such as reflectivity, absorption coefficient, electron energy-loss function, refractive index, and extinction coefficient — are calculated. We have also made some comparisons with related experimental and theoretical data that is available.   相似文献   

9.
Thin films of Ga10Se80Hg10 have been deposited onto a chemically cleaned Al2O3 substrates by thermal evaporation technique under vacuum. The investigated thin films are irradiated by 60Co γ-rays in the dose range of 50–150 kGy. X-ray diffraction patterns of the investigated thin films confirm the preferred crystallite growth occurs in the tetragonal phase structure. It also shows, the average crystallite size increases after γ-exposure, which indicates the crystallinity of the material increases after γ-irradiation. These results were further supported by surface morphological analysis carried out by scanning electron microscope and atomic force microscope which also shows the crystallinity of the material increases with increasing the γ-irradiation dose. The optical transmission spectra of the thin films at normal incidence were investigated in the spectral range from 190 to 1100 nm. Using the transmission spectra, the optical constants like refractive index (n) and extinction coefficient (k) were calculated based on Swanepoel’s method. The optical band gap (Eg) was also estimated using Tauc’s extrapolation procedure. The optical analysis shows: the value of optical band gap of investigated thin films decreases and the corresponding absorption coefficient increases continuously with increasing dose of γ-irradiation.  相似文献   

10.
The structural, elastic, electronic and thermodynamic properties of the rhombohedral topological insulator Bi2Se3 are investigated by the generalized gradient approximation (GGA) with the Wu–Cohen (WC) exchange-correlation functional. The calculated lattice constants agree well with the available experimental and other theoretical data. Our GGA calculations indicate that Bi2Se3 is a 3D topological insulator with a band gap of 0.287 eV, which are well consistent with the experimental value of 0.3 eV. The pressure dependence of the elastic constants Cij, bulk modulus B, shear modulus G, Young’s modulus E, and Poisson’s ratio σ of Bi2Se3 are also obtained successfully. The bulk modulus obtained from elastic constants is 53.5 GPa, which agrees well with the experimental value of 53 GPa. We also investigate the shear sound velocity VS, longitudinal sound velocity VL, and Debye temperature ΘE from our elastic constants, as well as the thermodynamic properties from quasi-harmonic Debye model. We obtain that the heat capacity Cv and the thermal expansion coefficient α at 0 GPa and 300 K are 120.78 J mol?1 K?1 and 4.70 × 10?5 K?1, respectively.  相似文献   

11.
S. Al-Rajoub 《哲学杂志》2015,95(22):2466-2481
The structural, electronic and optical properties of mercury cadmium telluride (Hg1?xCdxTe; x = 0.0, 0.25, 0.5, 0.75) alloys are studied using density functional theory within full-potential linearized augmented plane wave method. We used the local density approximation (LDA), generalized gradient approximation (GGA), hybrid potentials, the modified Becke–Johnson (LDA/GGA)-mjb and Hubbard-corrected functionals (GGA/LDA + U), for the exchange-correlation potential (Eex). We found that LDA functional predicts better lattice constants than GGA functional, whereas, both functionals fail to predict the correct electronic structure. However, the hybrid functionals were more successful. For the case of HgTe binary alloy, the GGA + U functional predicted a semi-metallic behaviour with an inverted band gap of ?0.539 eV, which is closest to the experimental value (?0.30 eV). Ternary alloys, however, are found to be semiconductors with direct band gaps. For the x = 0.25 and 0.50, the best band gaps are found to be 0.39 and 0.81 eV using LDA-mbj functional, whereas, the GGA-mbj functional predicted the best band gap of 1.09 eV for Hg0.25Cd0.75Te alloy, which is in a very good agreement with the experimental value (1.061 eV). The optical properties of the alloys are obtained by calculating the dielectric function ?(ω). The peaks of the optical dielectric functions are consistent with the electronic gap energies of the alloys.  相似文献   

12.
We report on some electrical properties and solid–solid phase transitions of organic–inorganic hybrid layered halide perovskite and intercalated compound (n-C12H25NH3)2ZnCl4 which is one member of the long-chain compounds of the series (n-CnH2n+1NH3)2,(n = 8–18). The complex dielectric permittivity ?*(ω,T) and the ac conductivity σ (ω,T) were measured as functions of temperature 100 K < T < 390 K and frequency 5 kHz < f < 100 kHz. Moreover, the differential scanning calorimetery and the differential thermal analysis thermograms were performed. The analysis of our data confirms the existence of a structural phase transition at T ≈ (362?±?2) K, where the compound changes its state from intercalation to non-intercalation with a drastic increase in the c-axis by about 16.4%.

The behavior of the frequency-dependent conductivity follows the Jonscher universal power law: σ (ω, T) α?s(?,T). The mechanism of electrical conduction in the low-temperature phase (phase II) can be described as quantum mechanical tunneling model.  相似文献   

13.
Polyvinyl alcohol (PVA) doped (Se80Te20)100–xAgx (0 ≤ x ≤ 4) thin films were prepared by the spin-coating technique on a quartz substrate. The optical parameters of PVA-doped (Se80Te20)100–xAgx (0 ≤ x ≤ 4) composites at the same chalcogen concentration (S0 = 0.1 mg ml?1) and PVA/(Se80Te20)96Ag4 composites at three different chalcogen concentrations viz. S1 = 0.3 mg ml?1, S2 = 0.6 mg ml?1 and S3 = 1 mg ml?1 have been studied. The semi-crystalline nature of the as-deposited thin filmsisdetermined by X-ray diffraction. The transmission and reflection spectra of PVA-doped Se–Te–Ag thin films were obtained in a 350–650 nm spectral region. The optical-band gap has been calculated from the transmission and reflection data. The refractive index has been calculated by the measured reflection data. It has been found that the optical-band gap increases, but the refractive index, extinction coefficient, and the real and imaginary parts of the dielectric constant decrease, with increase in Agcontent in PVA-doped (Se80Te20)100–xAgx (0 ≤ x ≤ 4) thin films. Such type of behavior is explained on the basis of decrease in density of the defect states. However, the optical-band gap has been found to be decreased and all other optical parameters show increase in their values with increase in concentration of (Se80Te20)96Ag4 glass in PVA-doped composites. The results have been explained on the basis of cluster-size formation at the time of dissolution. This study shows that the optical properties of new composites are affected by the change in silver and chalcogen concentration.  相似文献   

14.
Abstract

In this paper the results of birefringence studies and of optical observations in polarized light in a wide temperature region are presented for crystals Cs2CdI4 and Cs2ZnI4. There is the following sequence of phases: commensurate orthorhombic Pnma ? incommensurate ? monoclinic ferroelastic P21/n ? triclinic ferroelastic PT. A correlation was observed between the peculiarities of birefringence and NQR spectra temperature dependence. An assumption is made, that in Cs2ZnI4 crystal in a broad pre-transition region (T - T i = 100 K) precursor clusters exist, which manifest themselves as coexistence of NQR spectra of two phases and as deviation of birefringence from the linear temperature dependence (“tail”).  相似文献   

15.
Abstract

In this study, the elastic, electronic, optical and thermoelectric properties of CaTiO3 perovskite oxide have been investigated using first-principles calculations. The generalised gradient approximation (GGA) has been employed for evaluating structural and elastic properties, while the modified Becke Johnson functional is used for studying the optical response of this compound. In addition to ground state physical properties, we also investigate the effects of pressure (0, 30, 60, 90 and 120 GPa) on the electronic structure of CaTiO3. The application of pressure from 0 to 90 GPa shows that the indirect band gap (Γ-M) of CaTiO3 increases with increasing pressure and at 120 GPa it spontaneously decreases transforming cubic CaTiO3 to a direct (Γ-Γ) band gap material. The complex dielectric function and some optical parameters are also investigated under the application of pressures. All the calculated optical properties have been found to exhibit a shift to the higher energies with the increase of applied pressure suggesting potential optoelectronic device applications of CaTiO3. The thermoelectric properties of CaTiO3 have been computed at 0 GPa in terms of electrical conductivity, thermal conductivity and Seebeck coefficient.  相似文献   

16.
G. Turgut 《哲学杂志》2015,95(14):1607-1625
In the present work, an investigation study on the crystal structure, surface morphology, electrical conductivity and optical transparency of spray-deposited Pr-doped SnO2 was made as a function of Pr doping content. The X-ray diffraction studies indicated that the films were grown at the (2 1 1) preferential orientation. The values of crystallite size and strain were determined using Williamson–Hall method and they varied between 71.47 and 208.76 nm, and 1.98 × 10?3 – 2.78 × 10?3. As seen from Scanning Electron Microscope micrographs, the films were composed of homogenous dispersed pyramidal-shaped grains. The n-type conductivity of films was confirmed with Hall Effect measurements, and the best electrical parameters were found for 3 at.% Pr doping level. The highest optical band gap and transmittance values were observed for undoped SnO2 sample. The highest figure of merit (Φ), which is a significant parameter to interpret the usage efficiency of conductive and transparent materials in the optoelectronic and solar cell applications, was calculated to be 2.85 × 10?5 Ω?1 for 1 at.% Pr doping content. As a result of this study, it may be concluded that Pr-doped SnO2 films with above properties can be used as a transparent conductor in various optoelectronic applications.  相似文献   

17.
The ground and excited structures of the molecules are compared basis on the calculated by HF and CIS, respectively. The ionization potentials (IPs), electron affinities (EAs) and HOMO–LUMO gaps (ΔEHOMO–LUMO) of the oligomers are studied by the density functional theory (DFT) with B3LYP functional while the vertical excitation energies (Egs) and the maximal absorption wavelength λabs of oligomers of bifluorene and its derivatives DFE, DFA, DFBT, FDBO, and FSCHD are studied employing the time dependent density functional theory (TD‐DFT) and ZINDO. Compared with BF, the derivatives DFE, DFA, and DFBT are better conjugated, easier to give an electron or a hole, as well as get an electron or a hole. Their HOMO–LUMO gaps are narrower and they have lower vertical excitation energies. The absorption and emission spectra of them are red shifting. However, FDBO and FSCHD are in the other way round. It is important that FDBO and FSCHD are good blue emitters. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
The measured values and the analysis of the dispersion of the unclamped linear electrooptic coefficient rT41 in cubic ZnS single crystals operating as optical modulator are presented. The spectral dispersion of the non-linear optical coefficient d41(ω, ω, 0) is also reported and the weak dependence on the light frequency, observed for d41, is discussed by taking into account the opposite sign of ionic and electronic contributions.  相似文献   

19.
12 TiO20. The first two can be measured by simple and classical methods, but the coexistence of optical activity, electrogyration, field-induced linear birefringence, and piezoelectric and photoelastic effects in photorefractive materials such as Bi12TiO20 complicate the measurement of the electro-optic coefficient. For normal incidence of linearly polarized light we derive analytic expressions for the polarization of light that has passed through the crystal. The ellipticity of the polarization is a function of the electric-field-induced linear birefringence and hence of the electro-optic coefficient of the crystal. Therefore measurement of the ellipticity as a function of an electric field externally applied to the crystal leads to an electro-optic coefficient r41 of 5.3±0.1 pm/V. Received: 22 December 1996/Revised version: 21 March 1997  相似文献   

20.
The present paper aims to study the structural, electronic, optical and thermal properties of the boron nitride (BN) and BAs bulk materials as well as the BNxAs1–x ternary alloys by employing the full-potential-linearised augmented plane wave method within the density functional theory. The structural properties are determined using the Wu–Cohen generalised gradient approximation that is based on the optimisation of the total energy. For band structure calculations, both the Wu–Cohen generalised gradient approximation and the modified Becke–Johnson of the exchange-correlation energy and potential, respectively, are used. We investigated the effect of composition on the lattice constants, bulk modulus and band gap. Deviations of the lattice constants and the bulk modulus from the Vegard’s law and the linear concentration dependence, respectively, were observed for the alloys where this result allows us to explain some specific behaviours in the electronic properties of the alloys. For the optical properties, the calculated refractive indices and the optical dielectric constants were found to vary nonlinearly with the N composition. Finally, the thermal effect on some of the macroscopic properties was predicted using the quasi-harmonic Debye model in which the lattice vibrations are taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号