首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Run-Yue Li 《哲学杂志》2016,96(10):972-990
First principles calculations were performed to systematically investigate structure properties, phase stability and mechanical properties of MB (M = Cr, Mo, W) monoborides in orthorhombic and tetragonal structures. The results of equilibrium structures are in good agreement with other available theoretical and experimental data. The elastic properties, including bulk modulus B, shear modulus G, Young’s modulus E and Poisson’s ratio ν were calculated by the Voigt-Reuss-Hill approximation. All considered monoborides are mechanically stable. The results of elastic anisotropies show that elastic anisotropy of orthorhombic structure is larger than that of tetragonal structure. Moreover, the minimum thermal conductivities were also estimated using the Cahill’s model, and the results indicate that the minimum thermal conductivities show a dependence on directions.  相似文献   

2.
Lishi Ma  Runyue Li 《哲学杂志》2013,93(27):2406-2424
Abstract

Systematic investigations of phase stability and mechanical properties of C15-type ZrM2 (M = Cr, Mo and W) Laves phases were performed using first-principles calculations. The formation enthalpies of ZrM2 are in good agreement with the theoretical and experimental values. The elastic properties, including elastic constants and moduli, Poisson’s ratio and B/G, were discussed. The elastic anisotropy was also investigated via the anisotropy indexes (AU, AZ, Ashear and Acomp), the anisotropy of shear modulus and the 3D construction of bulk and Young’s moduli. The elastic anisotropy of ZrM2 is in order of ZrCr2 < ZrMo2 < ZrW2. The variations in the shear modulus and hardness show similar trends with increasing values from ZrCr2 to ZrW2. The electronic structures for these C15-type Laves phases were analysed to obtain deeper understanding of chemical bonds and phase stabilities. Finally, the sound velocities and Debye temperatures were also investigated.  相似文献   

3.
4.
The structural, elastic, electronic and thermodynamic properties of the rhombohedral topological insulator Bi2Se3 are investigated by the generalized gradient approximation (GGA) with the Wu–Cohen (WC) exchange-correlation functional. The calculated lattice constants agree well with the available experimental and other theoretical data. Our GGA calculations indicate that Bi2Se3 is a 3D topological insulator with a band gap of 0.287 eV, which are well consistent with the experimental value of 0.3 eV. The pressure dependence of the elastic constants Cij, bulk modulus B, shear modulus G, Young’s modulus E, and Poisson’s ratio σ of Bi2Se3 are also obtained successfully. The bulk modulus obtained from elastic constants is 53.5 GPa, which agrees well with the experimental value of 53 GPa. We also investigate the shear sound velocity VS, longitudinal sound velocity VL, and Debye temperature ΘE from our elastic constants, as well as the thermodynamic properties from quasi-harmonic Debye model. We obtain that the heat capacity Cv and the thermal expansion coefficient α at 0 GPa and 300 K are 120.78 J mol?1 K?1 and 4.70 × 10?5 K?1, respectively.  相似文献   

5.
E. Deligoz  H. Ozisik 《哲学杂志》2015,95(21):2294-2305
The first-principles calculations are employed to provide a fundamental understanding of the structural features and relative thermodynamical, mechanical and phonon stability of TiAsTe compound. The calculated lattice parameters are in good agreement with available experimental results. We have computed elastic constants, its derived moduli and ratios that characterize mechanical properties for the first time. The calculated elastic constants indicate that these materials are mechanically stable at ambient condition. The minimum thermal conductivities of TiAsTe are calculated using both Clarke’s model and Cahill’s model. Furthermore, the elastic anisotropy has been visualized in detail by plotting the directional dependence of compressibility, Young’s modulus and shear modulus. Our results suggest strong elastic anisotropy for this compound. Additionally, the phonon spectra and phonon density of states are also obtained and discussed. The full phonon dispersion calculations confirm the dynamic stability of TiAsTe.  相似文献   

6.
Pressure dependence of the structural and elastic properties of perovskite-type cubic SrWO2.05N0.95 was studied using firstprinciples density functional theory (DFT) utilizing the plane wave pseudopotential and the exchange-correlation functionals within the generalized gradient approximation. The estimated bulk modulus and its pressure derivative values from the P ? V data fitted to the third-order Birch-Murnaghan equation of state were close to the data obtained from the independent elastic constants. Based on the generalized Born stability criteria, SrWO2.05N0.95 is mechanically stable up to 139 GPa. The influence of hydrostatic pressure (0 to 139 GPa) on the bulk modulus, shear modulus, Young’s modulus, Pugh’s modulus ratio, Poisson’s ratio, Vickers hardness, sound velocities, Debye temperature, Debye-Grüneisen parameter, minimum thermal conductivity and elastic anisotropy of SrWO2.05N0.95 was particularly studied in detail. It was found that SrWO2.05N0.95 is a ductile and hard solid with large bulk, shear and Young’s modulus and displays an extraordinary low thermal conductivity. Since there are not any experimental or theoretical data available for comparison the results of the present study have revealed an important fundamental information about the elastic properties of perovskite-type cubic SrWO2.05N0.95 for future experimental studies.  相似文献   

7.
The thermodynamic, elastic, elastic anisotropy and minimum thermal conductivity of β-GaN are investigated at ambient pressure and high temperature by using first-principles calculations method with the ultrasoft psedopotential scheme. The elastic constants calculations reveal β-GaN is mechanically stability at ambient pressure and high temperature. The elastic modulus (Poisson's ratio, shear modulus and Young's modulus) decreases with increasing temperature. The calculations of anisotropy show that β-GaN has a larger elastic anisotropy in Poisson's ratio, shear modulus, Young's modulus and Zener anisotropy index. In addition, when the temperature increases from 0 to 1500 K, the elastic anisotropy decreases for β-GaN. The quasi-harmonic Debye model is successfully applied to determine the thermodynamic properties at different pressures and temperatures. Using the quasi-harmonic Debye model, the thermodynamic properties including the Debye temperature, Grüneisen parameter, the heat capacity, adiabatic bulk modulus, and the thermal expansion coefficients of β-GaN are predicted under high temperature and high pressure.  相似文献   

8.
The structural, elastic and electronic properties of BaZnO2 under pressure are investigated by the plane wave pseudopotential density functional theory (DFT). The calculated lattice parameters and unit cell volume of BaZnO2 at the ground state are in good agreement with the available experimental data and other theoretical data. The pressure dependences of elastic constants Cij, bulk modulus B, shear modulus G, B/G, Poisson’ s ratio σ, Debye temperature Θ and aggregate acoustic velocities VP and VS are systematically investigated. It is shown that BaZnO2 maintains ductile properties under the applied pressures. Analysis for the calculated elastic constants has been made to reveal the mechanical stability and mechanical anisotropy of BaZnO2. At the ground state, the calculated compressional and shear wave velocities are 8.26 km/s and 1.81 km/s, respectively, and the Debye temperature Θ is 240.8 K. The pressure dependences of the density of states and the bonding property of BaZnO2 are also investigated.  相似文献   

9.
ABSTRACT

In order to better understand and elucidate the structural stability of perovskite materials, the lattice parameters and tolerance factors of three crystal structures of perovskite materials are calculated based on the first principle of density functional theory. We find that the perovskite crystal structures are relatively stable and is consistent with the experimental facts as the tolerance factor 0.81?<?T?<?1.11. The elastic modulus of three crystal structures of MAPbI3, FAPbI3 and the elastic modulus of FA0.75Cs0.25Sn0.5PB0.5I3 are studied. By Voigt-Reuss-Hill approximation, the elastic properties such as bulk modulus, shear modulus, Young’s modulus and Poisson’s ratio are obtained. From the elastic modulus Cij, we can find that the other six kinds of crystal structures are relatively stable except for the orthogonal structure of MAPbI3 (c). The ductility and brittle toughness of the material are also discussed by B/G and Poisson’s ratio. It is found that MAPbI3 (a) is the hardest and FAPBI3 (a) the weakest. Form the three-dimensional surface view of Young's modulus it is found that their dependence in three-dimensional direction is spherical for an isotropic system. The degree of deviation of the Young's modulus sphere reflects the anisotropy of crystal structures. The degree of elastic anisotropy of organic–inorganic perovskite materials follows the order of FAPbI3(c)?>?MAPbI3(a)?>?FA0.75?Cs0.25?Sn0.5Pb0.5I3?>?FAPbI3(a)?>?MAPbI3(b)?>?MAPbI3(c)?>FAPbI3(b). Furthermore, by the adsorption energies and density of states (DOS) of these seven crystals for water molecules, the reasons why perovskite materials are easily denatured in high humidity environment were explored. The results show that perovskite materials are easy to denaturate in high humidity environment.  相似文献   

10.
ABSTRACT

The structural, electronic, elastic and thermodynamic properties of LuX (X = N, Bi and Sb) based on rare earth into phases, Rocksalt (B1) and CsCl (B2) have been investigated using full-potential linearized muffin-tin orbital method (FP-LMTO) within density functional theory. Local density approximation (LDA) for exchange-correlation potential and local spin density approximation (LSDA) are employed. The structural parameters as lattice parameters a0, bulk modulus B, its pressure derivate B’ and cut-off energy (Ec) within LDA and LSDA are presented. The elastic constants were derived from the stress–strain relation at 0 K. The thermodynamic properties for LuX using the quasi-harmonic Debye model are studied. The temperature and pressure variation of volume, bulk modulus, thermal expansion coefficient, heat capacities, Debye temperature and Gibbs free energy at different pressures (0–50 GPa) and temperatures (0–1600 K) are predicted. The calculated results are in accordance with other data.  相似文献   

11.
Shuai Chen  Bo Huang  Wen-Cheng Hu 《哲学杂志》2015,95(32):3535-3553
The structural properties, phase stabilities, anisotropic elastic properties and electronic structures of Cu–Ti intermetallics have been systematically investigated using first principles based on the density functional theory. The calculated equilibrium structural parameters agree well with available experimental data. The ground-state convex hull of formation enthalpies as a function of Cu content is slightly symmetrical at CuTi with a minimal formation enthalpy (–13.861 kJ/mol of atoms), which indicates that CuTi is the most stable phase. The mechanical properties, including elastic constants, polycrystalline moduli and anisotropic indexes, were evaluated. G/B is more pertinent to hardness than to the shear modulus G due to the high power indexes of 1.137 for G/B. The mechanical anisotropy was also characterized by describing the three-dimensional (3D) surface constructions. The order of elastic anisotropy is Cu4Ti3 > Cu3Ti2 > α-Cu4Ti > Cu2Ti > CuTi > β-Cu4Ti > CuTi2. Finally, the electronic structures were discussed and Cu2Ti is a semiconductor.  相似文献   

12.
The structural and elastic properties of CrO2 in the rutile phase under high pressures have been investigated using pseudopotential plane-wave method based on density functional theory. The optimized lattice parameters and the bulk modulus at zero pressure agree well with available experimental and theoretical data. The elastic constants C 11, C 12, C 44, C 33, C 13, and C 66 at zero pressure are calculated to be 359.91, 264.69, 143.28, 309.45, 218.45, and 260.74 GPa, respectively. Elastic constants, bulk modulus, shear modulus, Young's modulus, and Poisson's ratio under pressures are obtained. Our results indicate that the rutile phase is mechanically stable below 11.99 GPa. The elastic anisotropy of rutile phase under pressures has also been predicted.  相似文献   

13.
Using first-principles calculations, we predict mechanical and thermodynamic properties of both Mg17Al12 and Mg2Sn precipitates in Mg–Al–Sn alloys. The elastic properties including the polycrystalline bulk modulus, shear modulus, Young’s modulus, Lame’s coefficients and Poisson’s ratio of both Mg17Al12 and Mg2Sn phases are determined with the Voigt–Reuss–Hill approximation. Our results of equilibrium lattice constants agree closely with previous experimental and other theoretical results. The ductility and brittleness of the two phases are characterized with the estimation from Cauchy pressure and the value of B/G. Mechanical anisotropy is characterized by the anisotropic factors and direction-dependent Young’s modulus. The higher Debye temperature of Mg17Al12 phase means that it has a higher thermal conductivity and strength of chemical bonding relative to Mg2Sn. The anisotropic sound velocities also indicate the elastic anisotropies of both phase structures. Additionally, density of states and Mulliken population analysis are performed to reveal the bonding nature of both phases. The calculations associated with phonon properties indicate the dynamical stability of both phase structures. The temperature dependences of thermodynamic properties of the two phases are predicted via the quasi-harmonic approximation.  相似文献   

14.
Abstract

The nodal-line semimetals are new and very promising materials for technological applications. To understand their structural, mechanical, lattice dynamical and thermal properties in detail, we have investigated theoretical study of ZrXY (X = Si,Ge; Y = S,Se) using Density Functional Theory for the first time. Obtained lattice parameters are in excellent agreement with previous experimental data. These nodal-line semimetals obey the mechanical stability conditions for tetragonal structure. We obtain Bulk modulus, Shear modulus, Poisson’s ratio, Pugh ratio, sound velocities and thermal conductivity using elastic constant. All the materials behave in brittle manner. Poisson’s ratio data and Bader charge analysis results indicate that the ionic bonding characters are dominant. Next, the lattice dynamical properties are calculated. Phonon density of states shows that nodal-line semimetals ZrXY are also dynamically stable in the tetragonal structure. Raman and IR active phonon modes are determined. Highest optical mode at gamma point corresponds to A2u (IR active) and Eg (Raman active) modes for ZrXSe and ZrXS, respectively. Based on phonon density of states, thermal properties such as Helmholtz free energy, entropy, heat capacity at constant volume and Debye temperature are also presented and discussed.  相似文献   

15.
The electrical conductivity of alkali feldspar along different orientations was determined at 1.0 GPa and at temperatures of 823–1286 K in a cubic anvil apparatus using alternating current impedance spectroscopy. Impedance arcs representing crystal conductivity occur in the frequency range of ~103–106 Hz. The electrical conductivity of alkali feldspar increases with increasing temperature. The highest electrical conductivities in alkali feldspars were measured along the a-axis, with somewhat lower conductivities along the b-axis, and the lowest conductivities along the c-axis, suggesting minor anisotropy. The activation enthalpies ranged from 100 to 110 kJ/mol. The anisotropic results were combined to yield an isotropic model with an activation enthalpy of 102 kJ/mol. By comparing these results with previous results, we suggest that the dominating charge carriers for alkali feldspars are alkali ions. The minor anisotropy in conductivity for alkali feldspar may not account for the anisotropy of the crust.  相似文献   

16.
Abstract

SrClF is an important optical crystal and can be used as pressure gauge in diamond anvil cell at high pressure. In this work, we performed a systematic study on the structural, electronic and elastic properties of SrClF under pressure, as well as its thermal conductivity, by first-principles calculation. Different exchange-correlation functionals were tested and PBESOL was finally chosen to study these properties of SrClF. Studies reveal that SrClF has a bulk modulus of about 56.2 GPa (by fitting equation of states) or 54.3 GPa (derived from elastic constants), which agree well with the experimental result. SrClF is mechanically and dynamically stable up to 50 GPa. Its elastic constants increase with the applied pressure, but its mechanical anisotropy deteriorates as the pressure increases. Investigation of its electronic properties reveals that SrClF is a direct band-gap insulator with a gap value of 5.73 eV at 0 GPa, which decreases with the increasing pressure and the reason is found by analysing the partial density of states. Based on the calculated phonon dispersion curves, thermal conductivity of SrClF is predicated. At ambient conditions, the predicted thermal conductivity is about 3.74 Wm?1 K?1, while that obtained using the simplified Slack model give a slightly larger value of 4.62 Wm?1 K?1.  相似文献   

17.
LaYbO3 ceramic material with a perovskite structure has the advantages of a high melting point, sintering resistance and high-temperature phase stability. It is a promising candidate for a structurally and functionally integrated material. However, the anisotropy of physical properties of LaYbO3 has rarely been studied. Herein, the anisotropy of the mechanical and thermal properties of LaYbO3 was studied by first-principles calculations. The elastic coefficients, Young’s modulus, Poisson’s ratio and minimum thermal conductivity of LaYbO3 were found to exhibit anisotropic characteristics. In particular, the sound velocity of the longitudinal wave was nearly twice that of the transverse wave. Especially, the minimum thermal conductivity of LaYbO3 at high temperature was found to be as low as 0.88?W/m?K, indicating that the compound has potential for use in thermal insulation applications.  相似文献   

18.
The structural, mechanical, and phonon properties of NbRuB, TaRuB, and NbOsB compounds with orthorhombic space groups Pmma (No. 51) and Pbam (No. 55) are investigated by using first-principles calculations. The elastic constants and moduli, Debye temperature, Poisson’s ration, Pugh’s ratio, elastic anisotropy factors, and minimum thermal conductivities have been predicted to understand the mechanical behavior of these ternary compounds. The mechanical anisotropy is discussed via several anisotropy indices and two-dimensional (2D) surface constructions. We observe that all compounds ought to be classified as ductile materials and exhibit elastically anisotropy. Their mechanical and dynamical stability is confirmed via the calculated elastic constants and phonon dispersion curves, respectively. This work should provide a useful guide for designing ternary boride materials that have excellent thermoelectric performance.  相似文献   

19.
Weizong Bao  Dan Liu  Mingjun Peng 《哲学杂志》2013,93(21):2681-2702
ABSTRACT

Structural properties, elastic properties, sound velocities and Debye temperatures of CsCl-type refractory TiTM, ZrTM and HfTM (TM?=?Fe, Ru, Os) intermetallics were investigated using first-principles calculations. The calculated equilibrium lattice parameters are coincided with the reported experimental and theoretical data. Based on single-crystal elastic constants, polycrystalline elastic moduli, Poisson’s ratios, sound velocities and Debye temperatures were evaluated. Anisotropies in elastic moduli of these CsCl-type intermetallics were discussed by elastic anisotropy indexes, three-dimensional surface constructions and their projections, and directional elastic modulus. The results showed that ZrFe has the highest elastic anisotropy and ZrOs presents the lowest one. Finally, sound velocities, Debye temperatures and their anisotropies were also calculated and discussed.  相似文献   

20.
A fully orthorhombic boron nitride (BN) polymorph with an orthorhombic symmetry (Ima2-BN, space group: Ima2) was investigated by first-principles calculations. The Ima2-BN under 30 GPa is both mechanically and dynamically stable via elastic constants and phonon spectra. The anisotropic and electronic properties of Ima2-BN under different pressure are investigated in this work. The anisotropic properties calculations show that the Young's modulus of Ima2-BN in (001) plane exhibits the greatest anisotropy under ambient pressure, while in (111) plane it is the greatest when P > 20 GPa, while the (010) plane has always exhibited the minimal anisotropy whether under ambient pressure or high pressure. Ima2-BN is an indirect wider band gap semiconductor material under ambient pressure, and the band gap of Ima2-BN decreases with the increasing pressure. The minimum thermal conductivities κmin of Ima2-BN is 1.85 W/(cmK), it is slightly higher than of B4N4-I and c-BN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号