首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tianhe Jiang  Baolin Chu  Wei Yan 《Talanta》2009,78(2):442-447
A molecularly imprinted polymer (MIP) has been synthesized by a thermo-polymerization method using methacrylic acid (MAA) as functional monomer, ethylene glycol dimethacrylate (EGDMA) as cross-linker, acetonitrile as porogenic solvent, and 17β-estradiol as template. The MIP showed obvious affinity for 17β-estradiol in acetonitrile solution, which was confirmed by absorption experiments. After optimization of molecularly imprinted solid-phase extraction (MISPE) conditions, three structurally related estrogenic compounds (17β-estradiol, estriol, and diethylstilbestrol) were used to evaluate the selectivity of the MIP cartridges. The MIP cartridges exhibited highly selectivity for E2, the recoveries were 84.8 ± 6.53% for MIPs and 19.1 ± 1.93% for non-imprinted polymer (NIP) cartridges. The detection and quantification limits correspond to 0.023 and 0.076 mg L−1. Furthermore, the MISPE methods were used to selectively extract E2 from fish and prawn tissue prior to HPLC analysis. This MISPE-HPLC procedure could eliminate all matrix interference simultaneously and had good recoveries (78.3-84.5%).  相似文献   

2.
Two molecularly imprinted polymers (MIPs), in the physical form of well-defined polymer microspheres, were synthesised via precipitation polymerisation (PP) using an antiepileptic drug, carbamazepine (CBZ), as template molecule, methacrylic acid as functional monomer and either divinylbenzene 80 (DVB-80) or a mixture of DVB-80 and ethylene glycol dimethacrylate (EGDMA) as crosslinking agents. The MIP obtained using DVB-80 alone as crosslinking agent (MIP A) had a narrow particle size distribution (9.5 ± 0.5 μm) and a well-developed permanent pore structure (specific surface area in the dry state = 758 m2 g−1), whereas when a mixture of DVB-80 and EGDMA (MIP B) were used as crosslinking agents, the polymer obtained had a broader particle size distribution (6.4 ± 1.8 μm) and a relatively low specific surface area (23 m2 g−1). The molecular recognition character of both polymers was evaluated by means of LC and then a molecularly imprinted solid-phase extraction (MISPE) protocol; CBZ was recognised by both polymers, and useful cross-selectivity for oxcarbazepine (OCBZ), which is the main metabolite of CBZ, also observed. In a detailed bioanalytical study, MIP A was selected in preference to MIP B since MIP A enabled a high volume of sample to be extracted such that lower limits of detection were achievable using this polymer. High recoveries of CBZ and OCBZ were obtained in a MISPE protocol when 50 mL of human urine spiked at 0.2 mg L−1 were percolated through MIP A (90% and 83%, respectively).  相似文献   

3.
This work reports the preparation of a molecularly imprinted polymer (MIP) for selective catalytic detection of serotonin (5-hydroxytryptamine, 5-HT). The process is based on the synthesis of polymers with hemin introduced as the catalytic center to mimic the active site of peroxidase. The copolymer MIP, containing artificial recognition sites for 5-HT, has been prepared by bulk polymerization using methacrylic acid (MAA) and hemin as the functional monomers, and ethylene glycol dimethacrylate (EGDMA) as the cross-linker. For the determination of 5-HT, a flow injection analysis system coupled to an amperometric detector was optimized using multivariate analysis. The effects of different parameters, such as pH, buffer flow rate, buffer nature, peroxide concentration and sample volume were evaluated. After optimizing the experimental conditions, a linear response range from 1.0 up to 1000.0 μmol L−1 was obtained with a sensitivity of 0.4 nA/μmol L−1. The detection limit was found to be 0.30 μmol L−1, while the precision values (n = 6) evaluated by relative standard deviation (R.S.D.) were, respectively, 1.3 and 1.7% for solutions of 50 and 750 μmol L−1 of 5-HT. No interference was observed by structurally similar compounds (including epinephrine, dopamine and norepinephrine), thus validating the good performance of the imprinted polymer. The method was applied for the determination of 5-HT in spiked blood serum samples.  相似文献   

4.
A molecularly imprinted polymer (MIP) designed to enable the selective extraction of carbamazepine (CBZ) from effluent wastewater and urine samples has been synthesised using a non-covalent molecular imprinting approach. The MIP was evaluated chromatographically in the first instance and its affinity for CBZ also confirmed by solid-phase extraction (SPE). The optimal conditions for SPE consisted of conditioning of the cartridge using acidified water purified from a Milli-Q system, loading of the sample under basic aqueous conditions, clean-up using acetonitrile and elution with methanol. The attractive molecular recognition properties of the MIP gave rise to good CBZ recoveries (80%) when 100 mL of effluent water spiked with 1 μg L−1 was percolated through the polymer. For urine samples, 2 mL samples spiked with 2.5 μg L−1 CBZ were extracted with a recovery of 65%. For urine, the linear range was 0.05-24 mg L−1, the limit of detection was 25 μg L−1 and precision, expressed as relative standard deviation at 0.5 mg L−1 (n = 3), was 3.1% and 12.6% for repeatability and reproducibility between days, respectively.  相似文献   

5.
This paper reports the synthesis and testing of a molecularly imprinted polymer membrane for digoxin analysis. Digoxin-specific bulk polymer was obtained by the UV initiated co-polymerisation of methacrylic acid and ethylene glycol dimethacrylate in acetonitrile as porogen. After extracting the template analyte, the ground polymer particles were mixed with plasticizer polyvinyl chloride to form a MIP membrane. A reference polymer membrane was prepared from the same mixture of monomers but with no template. The resultant membrane morphologies were examined by scanning electron microscopy. The imprinted membrane was tested as the recognition element in a digoxin-sensitive fluorescence sensor; sensor response was measured using standard solutions of digoxin at concentrations of up to 4 × 10−3 mg L−1. The detection limit was 3.17 × 10−5 mg L−1. Within- and between-day relative standard deviations RSD (n = 5) were in the range 4.5-5.5% and 5.5-6.5% respectively for 0 and 1 × 10−3 mg L−1 digoxin concentrations. A selectivity study showed that compounds of similar structure to digoxin did not significantly interfere with detection for interferent concentrations at 10, 30 and 100 times higher than the digoxin concentration. This simply manufactured MIP membrane showed good recognition characteristics, a high affinity for digoxin, and provided satisfactory results in analyses of this analyte in human serum.  相似文献   

6.
The design and construction of a highly selective voltammetric sensor for metronidazole by using a molecularly imprinted polymer (MIP) as recognition element were introduced. A metronidazole selective MIP and a nonimprinted polymer (NIP) were synthesized and then incorporated in the carbon paste electrodes (CPEs). The sensor was applied for metronidazole determination using cathodic stripping voltammetric method. The MIP-CP electrode showed very high recognition ability in comparison to NIP-CPE. Some parameters affecting the sensor response were optimized and then the calibration curve was plotted. Two dynamic linear ranges of 5.64 × 10−5 to 2.63 × 10−3 mg L−1 and 2.63 × 10−3 to 7.69 × 10−2 mg L−1 were obtained. The detection limit of the sensor was calculated as 3.59 × 10−5 mg L−1. This sensor was used successfully for metronidazole determination in biological fluids.  相似文献   

7.
Zhou WH  Guo XC  Zhao HQ  Wu SX  Yang HH  Wang XR 《Talanta》2011,84(3):777-782
In this work, a highly selective sample cleanup procedure that combining molecular imprinting technique (MIT) and solid phase extraction (SPE) was developed for the isolation of domoic acid (a fascinating marine toxin) from seafood samples. The molecular imprinting polymer (MIP) for domoic acid was prepared using 1,3,5-pentanetricarboxylic acid as the template molecule instead of domoic acid. 4-Vinyl pyridine was used as the functional monomer and ethylene glycol dimethacrylate was used as the cross-linking monomer. The obtained imprinted polymer showed high affinity to domoic acid and was used as selective sorbent for the SPE of domoic acid from seafood samples. An off-line molecularly imprinted solid phase extraction (MISPE) method followed by high-performance liquid chromatography (HPLC) with diode-array detection for the detection of domoic acid was also established. Good linearity was obtained from 0.5 mg L−1 to 25 mg L−1 (R2 > 0.99) with a quantitation limit of 0.1 mg L−1, which was sufficient to determine domoic acid at the maximum level permitted by several authorities. The mean recoveries of domoic acid from mussel extracts were 93.4-96.7%. It was demonstrated that the proposed MISPE-HPLC method could be applied to direct determination of domoic acid from seafood samples.  相似文献   

8.
In this work, a novel method is described for the determination of bromhexine in biological fluids using molecularly imprinted solid-phase extraction as the sample cleanup technique combined with high performance liquid chromatography (HPLC). The water-compatible molecularly imprinted polymers (MIPs) were prepared using methacrylic acid as functional monomer, ethylene glycol dimethacrylate as cross-linker, chloroform as porogen and bromhexine as the template molecule. The novel imprinted polymer was used as a solid-phase extraction sorbent for the extraction of bromhexine from human serum and urine. Various parameters affecting the extraction efficiency of the polymer have been evaluated. The optimal conditions for molecularly imprinted solid-phase extraction (MISPE) consisted of conditioning 1 mL methanol and 1 mL of deionized water at neutral pH, loading of 5 mL of the water sample (25 μg L−1) at pH 6.0, washing using 2 mL acetonitrile/acetone (1/4, v/v) and elution with 3× 1 mL methanol/acetic acid (10/1, v/v). The MIP selectivity was evaluated by checking several substances with similar molecular structures to that of bromhexine. Results from the HPLC analyses showed that the calibration curve of bromhexine using MIP from human serum and urine is linear in the ranges of 0.5-100 and 1.5-100 μg L−1 with good precisions (3.3% and 2.8% for 5.0 μg L−1), respectively. The recoveries for serum and urine samples were higher than 92%.  相似文献   

9.
In this study a novel preparation protocol has been developed for the construction of an in-tube molecularly imprinted polymer-solid phase microextraction (MIP-SPME) device. Open tubular capillaries have been molded from a polymer sorbent imprinted for 4-nitrophenol as target molecule. Different parameters like inner diameter and volume of the polymer, porogen volume, swelling and shrinking effects of the polymer tubes, polymerization time, pH of the sample, extraction time, ‘salting out’ effect and serial connection of the tubes were evaluated and optimized. Particularly, an optimized polymer preparation process and extraction condition enhanced the final extraction recovery of 4-nitrophenol substantially. Using this new MIP-SPME technique with high-performance liquid chromatography-ultraviolet (HPLC-UV) analysis of the extracts, the linear range and the limits of detection and quantification are 0.001–10 mg L−1, 0.33 μg L−1 and 1.1 μg L−1 respectively. At optimized conditions, a mixture of nitrophenols, alkylated and chlorinated phenols spiked into municipal waste water were analyzed to evaluate the matrix effects and cross selectivity of the new MIP capillary tubes.  相似文献   

10.
This paper reports a facile and general method for preparing an imprinted polymer thin shell with Mn-doped ZnS quantum dots (QDs) at the surface of silica nanoparticles by stepwise precipitation polymerization to form the highly-controllable core–shell nanoparticles (MIPs@SiO2–ZnS:Mn QDs) and sensitively recognize the target 2,4-dichlorophenol (2,4-DCP). Acrylamide (AM) and ethyl glycol dimethacrylate (EGDMA) were used as the functional monomer and the cross-linker, respectively. The MIPs@SiO2–ZnS:Mn QDs had a controllable shell thickness and a high density of effective recognition sites, and the thickness of uniform core–shell 2,4-DCP-imprinted nanoparticles was controlled by the total amounts of monomers. The MIPs@SiO2–ZnS:Mn QDs with a shell thickness of 45 nm exhibited the largest quenching efficiency to 2,4-DCP by using the spectrofluorometer. After the experimental conditions were optimized, a linear relationship was obtained covering the linear range of 1.0–84 μmol L−1 with a correlation coefficient of 0.9981 and the detection limit (3σ/k) was 0.15 μmol L−1. The feasibility of the developed method was successfully evaluated through the determination of 2,4-DCP in real samples. This study provides a general strategy to fabricate highly-controllable core–shell imprinted polymer-contained QDs with highly selective recognition ability.  相似文献   

11.
A novel chemiluminescence (CL) microfluidic system incorporating a molecularly imprinted polymer (MIP) preconcentration step was used for the determination of chloramphenicol in honey samples. The MIP was prepared by using chloramphenicol as the template, diethylaminoethyl methacrylate (DAM) as the function monomer, ethylene glycol dimethacrylate (EGDMA) as the cross-linking monomer, 2, 2′-dimethoxy-2-phenylacetophenone (DMPA) as the free radical initiator and toluene and dodecanol as the solvent. The MIP was pre-loaded into a 10 mm long, 2 mm wide and 150 μm deep channel in a planar glass microfluidic device. When the sample containing chloramphenicol was introduced into the microfluidic device it was first preconcentrated on the MIP then detected by an enhancement effect on the chemiluminescence reaction of tris(2, 2′-bipyridyl) ruthenium(II) with cerium(IV) sulphate in sulphuric acid. A micro-syringe pump was used to pump the reagents. The CL intensity was linear in relationship to the chloramphenicol concentrations from 1.55 × 10−4 to 3.09 × 10−3 μmol L−1 (r2 = 0.9915) and the detection limit (3σ) and the quantitation limit (10σ) were found to be 7.46 × 10−6 and 2.48 × 10−5 μmol L−1, respectively. This method offered a high selectivity and sensitivity for quantitative analysis of chloramphenicol in the honey samples.  相似文献   

12.
By using a molecularly imprinted polymer (MIP) as a recognition element, the design and construction of a high selective voltammetric sensor for para-nitrophenol was formed. Para-nitrophenol selective MIP and a non-imprinted polymer (NIP) were synthesized, and then used for carbon paste (CP) electrode preparation. The MIP-CP electrode showed greater recognition ability in comparison to the NIP-CP. It was shown that electrode washing after para-nitrophenol extraction led to enhanced selectivity, without noticeably decreasing the sensitivity. Some parameters affecting sensor response were optimized and a calibration curve was plotted. A dynamic linear range of 8 × 10−9 to 5 × 10−6 mol L−1 was obtained. The detection limit of the sensor was calculated as 3 × 10−9 mol L−1. Thus, this sensor was used successfully for the para-nitrophenol determination in different water samples.  相似文献   

13.
In this work a molecularly imprinted polymer was developed as a selective sorbent for extraction of loratadine (as a model) in complex matrices followed by miniaturized homogeneous liquid–liquid extraction (MHLLE) for the first time. The molecularly imprinted polymer (MIP) which is based on loratadine as the template was synthesized successfully by precipitation polymerization and was used as a selective sorbent. This technique was applied for preconcentration, sample preparation, and determination of loratadine using high performance liquid chromatography-photo diode array detection (HPLC-PDA). Optimization of various parameters affecting molecular imprinted solid phase extraction (MISPE), such as pH of adsorption, composition and volume of eluent, adsorption and desorption times were investigated. Besides, in the subsequent stage (MHLLE) the type and volume of extraction solvent, sodium hydroxide amount, surfactant concentration, and extraction time were investigated and optimized. Under the optimal condition, maximum enrichment capacity and Langmuir constant were 91 mg g−1 and 0.014 L mg−1, respectively. Furthermore, enrichment factor and extraction recovery of MIP-MHLLE method were 30 and 90%, respectively. The LOD of the proposed method was 0.2 μg L−1 and a linear dynamic range of 1–1000 μg L−1 was obtained with correlation coefficient of greater than 0.998. The present method was applied for extraction and determination of loratadine in plasma and urine samples in μg L−1 levels and satisfactory results were achieved (RSD <8% based on three replicate measurements).  相似文献   

14.
Zn(II) ion-imprinted polymer materials used for solid-phase extraction (SPE) column were prepared by the copolymerization of 8-acryloyloxyquinoline (8-AOQ) monomer and a crosslinker ethylene glycol dimethacrylate (EGDMA) in the presence of 2,2′-azobisisobutyronitrile (AIBN) as an initiator. After removing Zn(II) ion from the polymer, molecularly imprinted polymers (MIPs) capable of selectively rebinding Zn(II) ion were obtained. The maximum adsorption capacity of Zn(II) on MIPs beads was about 3.9 mg g−1. The effect of pH and flow rate for quantitative enrichment was also investigated. The Zn(II)-imprinted microbeads have a greater affinity for Zn(II) with respect to Cu(II), Co(II) and Ni(II) ions. A detection limit of 0.65 μg L−1(3σ) and a relative standard deviation (R.S.D., n = 7) of 2.9% were obtained. The MIPs-SPE preconcentration procedure showed a linear calibration curve within concentration range from 0.65 to 130 μg L−1. Zn(II) ion-imprinted beads enabled the selective extraction of zinc ions from a complex matrix, and after 20 times of adsorption and desorption cycle, the recovery of adsorption capacity of Zn(II) on MIPs beads was only decreased 3.2%. The results suggested that these MIPs can be used several times without considerable loss of adsorption capacity.  相似文献   

15.
A selective molecularly imprinted polymer (MIP) has been synthesized for isoxicam pre-concentration, followed by its spectrophotometric determination based on hydrogen bonding interactions between examined drug and alizarin yellow GG. This method is able to evaluate isoxicam in range of 1.0 × 10−3 to 20.0 μg mL−1, with a limit of determination of 1.0 ng mL−1. The retention capacity and pre-concentration factor of prepared sorbent are 18.5 mg g−1 and 200, respectively; and the prepared MIPs can be reused at least for five times. The MIP capability for isoxicam selection and extraction from the solution is higher than non-imprinted polymer (NIP). Under optimum conditions, this procedure can be successfully applied to assay trace amounts of isoxicam in pharmaceutical and biological samples.  相似文献   

16.
A simple chiral high-performance liquid chromatography (HPLC) method with ultraviolet (UV) and circular dichroism (CD) detection was developed and validated for measuring benalaxyl enantiomers using (R,R) Whelk-O 1 column. The effects of mobile phase composition and column temperature on the entioseparation were investigated. A CD detector was used to determine the elution order of the enantiomers. Excellent resolution was easily obtained using n-hexane-polar organic alcohols mobile phase. The chiral recognition mechanism was also discussed. Based on the developed chiral HPLC method, enantioselective analysis methods for this fungicide in environment matrix (soil and water) were developed and validated. Good linearities were obtained over the concentration range of 0.25-25 mg L−1 for both enantiomers. Liquid-liquid extraction and solid phase extraction (SPE) were used for the enrichment and cleanup of soil and water samples. Recoveries for the two enantiomers were 79-91% at 0.02, 0.04 and 0.2 mg kg−1 levels from soil, and 89-101% at 0.0025, 0.01 and 0.05 mg L−1 levels from water. Run-to-run and day-to-day assay precisions were below 10% for both enantiomers at concentrations of 0.5, 1 and 5 mg L−1. Individual detection limits of the two enantiomers were both 2 ng. Limits of detection (LOD) were 0.004 mg kg−1 in soil and 0.001 mg L−1 in water.  相似文献   

17.
A facile and efficient molecularly imprinted polymer (MIP) recognition element of electrochemical sensor was fabricated by directly electro-polymerizing monomer o-phenylenediamine (oPD) in the presence of template quinoxaline-2-carboxylic acid (QCA), based on one-step controllable electrochemical modification of poly(pyrrole)-graphene oxide-binuclear phthalocyanine cobalt (II) sulphonate (PPY-GO-BiCoPc) functional composite on glassy carbon electrode (GCE). The MIP film coated on PPY-GO-BiCoPc functional composite decorated GCE (MIP/PPY-GO-BiCoPc/GCE) was presented for the first time. The synergistic effect and electro-catalytic activity toward QCA redox of PPY-GO-BiCoPc functional composite were discussed using various contrast tests. Also, the effect of experimental variables on the current response such as, electro-polymerization cycles, template/monomer ratio, elution condition for template removal, pH of the supporting electrolyte and accumulation time, were investigated in detail. Under the optimized conditions, the proposed MIP sensor possessed a fast rebinding dynamics and an excellent recognition capacity to QCA, while the anodic current response of square wave voltammetry (SWV) was well-proportional to the concentration of QCA in the range of 1.0 × 10−8–1.0 × 10−4 and 1.0 × 10−4–5.0 × 10−4 mol L−1 with a low detection limit of 2.1 nmol L−1. The established sensor was applied successfully to determine QCA in commercial pork and chicken muscle samples with acceptable recoveries (91.6–98.2%) and satisfactory precision (1.9–3.5% of SD), demonstrating a promising feature for applying the MIP sensor to the measurement of QCA in real samples.  相似文献   

18.
Wang Y  Tang J  Luo X  Hu X  Yang C  Xu Q 《Talanta》2011,85(5):2522-2527
In this work, a kojic acid electrochemical sensor, based on a non-covalent molecularly imprinted polymer (MIP) modified electrode, had been fabricated in the lab-on-valve system. The sensitive layer was synthesized by cyclic voltammetry using o-phenylenediamine as the functional monomer and kojic acid as the template. The template molecules were then removed from the modified electrode surface by washing with NaOH solution. Differential pulse voltammetry method using ferricyanide as probe was applied as the analytical technique, after extraction of kojic acid on the electrode. Chemical and flow parameters associated with the extraction process were investigated. The response recorded with the imprinted sensor exhibited a response in a range of 0.01-0.2 μmol L−1 with a detection limit of 3 nmol L−1. The interference studies showed that the MIP modified electrode had excellent selectivity. Furthermore, the proposed MIP electrode exhibited good sensitivity and low sample/reagent consumption, and the sensor could be applied to the determination kojic acid in cosmetics samples.  相似文献   

19.
For the first time, a diffusive gradients in thin films (DGT) device using molecularly imprinted polymer (MIP) as the binding agent and nylon membrane (NM) as the diffusive layer (NM-MIP-DGT) has been developed for sampling 4-chlorophenol (4-CP) in water. The MIP was prepared by precipitation polymerization with methacrylic acid as monomer and ethyleneglycoldimethacrylate as cross-linker. The diffusion coefficient of 4-CP through NM was obtained to be 0.788 ± 0.040 μ cm2 s−1 by diffusion cell method. The ratio was 1.01 ± 0.05 (mean ± standard deviation) for the concentration of 4-CP sampled by NM-MIP-DGT and analyzed by HPLC method to the total concentration of 4-CP in the synthetic solution where free 4-CP species dominated. The results showed that NM-MIP-DGT could sample 4-CP in synthetic solution accurately. The performance of NM-MIP-DGT for sampling 4-CP was independent of pH in the range of 3–7 and ionic strength in the range of 0.0001–0.1 mol L−1 NaCl solution. The concentration of free form of 4-CP sampled by NM-MIP-DGT decreased with the increasing concentration of dissolved organic carbon in different water samples due to the electrostatic interaction of natural organic compounds with 4-CP. 1.8 mg L−1 of the free form of 4-CP was determined by HPLC which was sampled by NM-MIP-DGT in an intermediate untreated industrial effluent. The NM-MIP-DGT can be a potential passive tool for sampling the free form of 4-CP in water.  相似文献   

20.
Molecularly imprinted (MIP) and blank polymers with affinity for nonylphenol were designed using computational modelling. Chromatographic tests demonstrated higher affinity of imprinted polymers towards the template nonylphenol as compared with blank polymers. The performance of both polymers in solid-phase extraction was however very similar. Both blank and imprinted polymers appeared to be suitable for the removal and pre-concentration of nonylphenol from contaminated water samples with 99% efficiency of the recovery. The commercial resins PH(EC) (Biotage) and C18 (Varian) tested in the same conditions used for comparative purposes had recovery rate <84%. The polymer capacity for nonylphenol was 231 mg g−1 for blank and 228 mg g−1 for MIP. The synthesised materials can have significance for sample pre-concentration and environmental analysis of this class of compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号