首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel, facile and inexpensive solid phase extraction (SPE) method using ethylene glycol bis-mercaptoacetate modified 3-(trimethoxysilyl)-1-propanethiol grafted Fe3O4 nanoparticles coupled with spectrofluorimetric detection was proposed for determination of aflatoxin M1 (AFM1) in liquid milk samples. The method uses the advantage fluorescence enhancement by β-cyclodexterin complexation of AFM1 in 12% (v/v) acetonitrile–water and the remarkable properties of Fe3O4 nanoparticles namely high surface area and strong magnetization were utilized to achieve high enrichment factor (57) and satisfactory extraction recoveries (91–102%) using only 100 mg of magnetic adsorbent. Furthermore, fast separation time of about 15 min avoids many time-consuming column-passing procedures of conventional SPE. The main factors affecting extraction efficiency including pH value, desorption conditions, extraction/desorption time, sample volume, and adsorbent amount were evaluated and optimized. Under the optimal conditions, a wide linear range of 0.04–8 ng mL−1 with a low detection limit of 0.015 ng mL−1 was obtained. The developed method was applied for extraction and preconcentration of AFM1 in three commercially available milk samples and the results were compared with the official AOAC method.  相似文献   

2.
A simple dispersive solid-phase micro-extraction method based on CoFe2O4 nano-particles (NPs) functionalized with 8-hydroxyquinoline (8-HQ) with the aid of sodium dodecyl sulfate (SDS) was developed for separation of Al(III) ions from aqueous solutions. Al(III) ions are separated at pH 7 via complex formation with 8-HQ using the functionalized CoFe2O4 nano-particles sol solution as a dispersed solid-phase extractor. The separated analyte is directly quantified by a spectrofluorometric method at 370 nm excitation and 506 nm emission wavelengths. A comparison of the fluorescence of Al(III)–8-HQ complex in bulk solution and that of Al(III) ion interacted with 8-HQ/SDS/CoFe2O4 NPs revealed a nearly 5-fold improvement in intensity. The experimental factors influencing the separation and in situ monitoring of the analyte were optimized. Under these conditions, the calibration graph was linear in the range of 0.1–300 ng mL−1 with a correlation coefficient of 0.9986. The limit of detection and limit of quantification were 0.03 ng mL−1 and 0.10 ng mL−1, respectively. The inter-day and intra-day relative standard deviations for six replicate determinations of 150 ng mL−1 Al(III) ion were 2.8% and 1.7%, respectively. The method was successfully applied to direct determine Al(III) ion in various human serum and water samples.  相似文献   

3.
In this paper, bamboo charcoals were modified using Fe3O4 nanosheets for the first time. The composites, as a novel solid-phase microextraction (SPME) fiber coating, were used for the extraction of seven polybrominated diphenyl ethers (PBDEs) in environmental water samples. The extraction factors (stirring rate, extraction time, and ionic strength) and desorption factors (desorption time and desorption temperature) of the fibers were systematically investigated and optimized. Under optimum conditions, the linear range was 1–1000 ng L−1. Based on the ratio of chromatographic signal to base line noise (S N−1 = 3), the limits of detection (LODs) can reach 0.25–0.62 ng L−1. The novel method was successful in the analysis of PBDEs in real environmental water samples. The results indicate that bamboo charcoal/Fe3O4 as an SPME coating material coupled with gas chromatography–negative chemical ionization-mass spectrometry is an excellent method for the routine analysis of PBDEs at trace levels in environmental water samples.  相似文献   

4.
Polythiophene (PT) was used as a surface modifier of graphene/Fe3O4 (G/Fe3O4) composite to increase merit of it, and also overcome some limitations and disadvantages of using G/Fe3O4 alone as solid phase extraction (SPE) sorbent. An in-situ chemical polymerization method was employed to prepare G/Fe3O4@PT nanocomposites. Application of this newly designed material in the magnetic SPE (MSPE) of polycyclic aromatic hydrocarbons (PAHs), as model analytes, in the environmental water samples was investigated. The characterization of the hybrid material was performed using transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray analysis, Fourier transform-infrared (FT-IR) spectroscopy and vibrating sample magnetometry. Seven important parameters, affecting the extraction efficiency of PAHs, including: amount of adsorbent, adsorption and desorption times, type and volume of the eluent solvent, initial sample volume and salt content of the sample were evaluated. The optimum extraction conditions were obtained as: 4 min for extraction time, 20 mg for sorbent amount, 100 mL for initial sample volume, toluene as desorption solvent, 0.6 mL for desorption solvent volume, 6 min for desorption time and 30% (w/v) for NaCl concentration. Good performance data were obtained at the optimized conditions. Detection limits were in the range of 0.009–0.020 μg L−1 in the real matrix. The calibration curves were linear over the concentration ranges from 0.03 to 80 μg L−1 with correlation coefficients (R2) between 0.995 and 0.998 for all the analytes. Relative standard deviations were ranged from 4.3 to 6.3%. Appropriate recovery values, in the range of 83–107%, were also obtained for the real sample analysis.  相似文献   

5.
The carbon coated Fe3O4 nanoparticles (Fe3O4/C) were synthesized by a simple hydrothermal reaction and applied as solid-phase extraction (SPE) sorbents to extract trace polycyclic aromatic hydrocarbons (PAHs) from environmental water samples. The Fe3O4/C sorbents possess high adsorption capacity and extraction efficiency due to strong adsorption ability of carbon materials and large surface area of nanoparticles, and only 50 mg of sorbents are required to extract PAHs from 1000 mL water samples. The adsorption attains equilibrium rapidly and analytes are eluted with acetonitrile readily. Salinity and solution pH have no obvious effect on the recoveries of PAHs, which avoids fussy adjustment to water sample before extraction. Under optimized conditions, the detection limits of PAHs are in the range of 0.2–0.6 ng L−1. The accuracy of the method was evaluated by the recoveries of spiked samples. Good recoveries (76–110%) with low relative standard deviations from 0.8% to 9.7% are achieved. This new SPE method provides several advantages, such as high extraction efficiency, high breakthrough volumes, convenient extraction procedure, and short analysis times. To our knowledge, this is the first time that Fe3O4/C nanoparticles are used for the pretreatment of environmental water samples.  相似文献   

6.
In the present work, a novel type of superparamagnetic nanosorbent, polythiophene-coated Fe3O4 nanoparticles (Fe3O4@PTh NPs), have been successfully synthesized. The synthesized NPs were characterized by scanning electron microscopy (SEM), Fourier transform-infrared (FT-IR) spectroscopy, and thermal gravimetric analysis (TGA). The synthesized Fe3O4@PTh NPs were applied as an efficient sorbent for extraction and preconcentration of several typical plasticizer compounds (di-n-butyl phthalate (DBP), di-(2-ethylhexyl) phthalate (DEHP), and dioctyl adipate (DOA)) from environmental water samples. Separation of Fe3O4@PTh NPs from the aqueous solution was simply achieved by applying external magnetic field. Separation and determination of the extracted plasticizers was performed by gas chromatography–flame ionization detection (GC–FID). Several variables affecting the extraction efficiency of the analytes i.e., amount of NPs sorbent, salt concentration, extraction time, and desorption conditions were investigated and optimized. The best working conditions were as follows: amount of sorbent, 100 mg; NaCl concentration, 30% (w/v); sample volume, 45 mL; extraction time, 10 min; and 100 μL of ethyl acetate for desorption of the analytes within 2 min. Under optimized conditions, preconcentration factors for DBP, DEHP, and DOA were obtained as 86, 194, and 213, respectively. The calibration curves were linear (R2 > 0.998) in the concentration range of 0.4–100 μg L−1 for both DEHP and DOA and 0.7–100 μg L−1 for DBP. The limits of detection (LODs) were obtained in the range of 0.2–0.4 μg L−1. The intra-day relative standard deviations (RSDs%) based on four replicates were obtained in the range of 4.0–12.3%. The proposed procedure was applied to analysis of water samples including river water, bottled mineral water, and boiling water exposed to polyethylene container (after cooling) and recoveries between 85 and 99% and RSDs lower than 12.8% were obtained.  相似文献   

7.
In this report, a non-toxic method was proposed for the simple synthesis of palladium nanoparticles (Pd)/Fe3O4@C peroxidase mimetics by virtue of in situ growth of Pd nanoparticles on Fe3O4@C magnetic nanoparticles. And a microfluidic paper-based multiplex colorimetric immunodevice (named α-sheet) was developed by site-selectively immobilizing multiple antigens owing to its intrinsic high-efficiency catalytic activity of peroxidase mimetics to multiple chromogenic reactions. The immunosensor platform was prepared by growing a layer of flower-like gold nanoparticles which could entrap the primary antibodies onto paper sensing zones, and the as-prepared Pd/Fe3O4@C peroxidase mimetics was used to label secondary antibodies. In the presence of 3,3′,5,5′-tetramethylbenzidine and o-phenylenediamine chromogenic substrates, Pd/Fe3O4@C peroxidase mimetics catalyzed chromogenic reactions and showed different colors with respective intensity. To precisely identify the intensity, a piece of black wax printed chromatographic paper with three observing windows (named β-sheet) was flatted on α-sheet. Under the optimal condition, the proposed multiplex colorimetric immunodevice displayed wide linear ranges from 0.005 to 30 ng mL−1 with low detection limits of 1.7 pg mL−1 for carcinoembryonic antigen (CEA) and α-fetoprotein (α-AFP). Meanwhile, the proposed method provided provided a non-toxic, low-cost and promising tool for point-of-care diagnosis.  相似文献   

8.
In-tube magnetic solid phase microextraction (in-tube MSPME) of fluoroquinolones from water and urine samples based on the use of sodium dodecyl sulfate (SDS) coated Fe3O4 nanoparticles packed tube has been reported. After the preparation of Fe3O4 nanoparticles (NPs) by a batch synthesis, these NPs were introduced into a stainless steel tube by a syringe and then a strong magnet was placed around the tube, so that the Fe3O4 NPs were remained in the tube and the tube was used in the in-tube SPME-HPLC/UV for the analysis of fluoroquinolones in water and urine samples. Plackett–Burman design was employed for screening the variables significantly affecting the extraction efficiency. Then, the significant factors were more investigated by Box–Behnken design. Calibration curves were linear (R2 > 0.990) in the range of 0.1–1000 μg L−1 for ciprofloxacin (CIP) and 0.5–500 μg L−1 for enrofloxacin (ENR) and ofloxacin (OFL), respectively. LODs for all studied fluoroquinolones ranged from 0.01 to 0.05 μg L−1. The main advantages of this method were rapid and easy automation and analysis, short extraction time, high sensitivity, possibility of fully sorbent collection after analysis, wide linear range and no need to organic solvents in extraction.  相似文献   

9.
In this paper, a novel sandwich electrochemiluminescence (ECL) immunosensor was constructed by ferrocene for quenching Ag nanoparticles functionalized g-C3N4 (Ag@g-C3N4) emission. The prepared Ag@g-C3N4 had strong and stable ECL signals compared to pure g-C3N4 and primary antibody (Ab1) can be immobilized on Ag@g-C3N4 by adsorption of Ag nanoparticles. Ferrocene carboxylic acid (Fc-COOH) labeled secondary antibody was immobilized on Au doped mesoporous Al2O3 nanorods (Au@Al2O3–Fc-COOH@Ab2) as labels through adsorption ability of Au toward proteins. After a sandwich-type immunoreaction, a remarkable decrease of ECL signal was observed due to the ECL quenching of Ag@g-C3N4 by Au@Al2O3–Fc-COOH@Ab2. As a result, the change of ECL intensity has a direct relationship with the logarithm of CEA concentrations in the range of 1 pg mL−1–100 ng mL−1 with a detection limit of 0.35 pg mL−1 (S/N = 3). Additionally, the proposed immunosensor shows high specificity, good reproducibility, and long-term stability.  相似文献   

10.
A new method based on the combination of magnetic solid phase extraction (MSPE) and spectrofluorimetric determination was developed for isolation and preconcentration of fluoxetine form aquatic and biological samples using sodium dodecyl sulfate (SDS) coated Fe3O4 nanoparticles (NPs) as a sorbent. The unique properties of Fe3O4 NPs including high surface area and strong magnetism were utilized effectively in the MSPE process. Effect of different parameters influencing the extraction efficiency of fluoxetine including the amount of Fe3O4 and SDS, pH value, sample volume, extraction time, desorption solvent and time were optimized. Under optimized condition, the method was successfully applied to the extraction of fluoxetine from water and urine samples and absolute recovery amount of 85%, detection limit of 20 μg L−1 and a relative standard deviation (RSD) of 1.4% were obtained. The method linear response was over a range of 50–1000 μg L−1 with R2 = 0.9968. The relative recovery in different aquatic and urine matrices were investigated and values of 80% to 104% were obtained. The whole procedure showed to be conveniently fast, efficient and economical for extraction of fluoxetine from environmental and biological samples.  相似文献   

11.
A simple extraction method for the analysis of PGE2 and PGF in gonad samples from Atlantic cod and further quantification by using liquid chromatography–tandem mass spectrometry is proposed. The evaluation of the best solvent extraction conditions and the analytical performance parameters are reported. The method was highly selective for both prostaglandins and the calibration curves, based on the internal standard method, were linear between 5 and 1000 ng mL−1 for PGE2 and PGF, with limits of detection of 1 ng mL−1 and 1.5 ng mL−1 and recovery values of 99.999 ± 0.002 and 99.967 ± 0.023 respectively. The homogenization of samples using liquid nitrogen combined with the developed extraction protocol can be implemented in different types of biological tissues.  相似文献   

12.
A series of spinel-type CoxNi1−xFe2O4 (x = 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0) magnetic nanomaterials were solvothermally synthesized as enzyme mimics for the eletroctrocatalytic oxidation of H2O2. X-ray diffraction and scanning electron microscope were employed to characterize the composition, structure and morphology of the material. The electrochemical properties of spinel-type CoxNi1−xFe2O4 with different (Co/Ni) molar ratio toward H2O2 oxidation were investigated, and the results demonstrated that Co0.5Ni0.5Fe2O4 modified carbon paste electrode (Co0.5Ni0.5Fe2O4/CPE) possessed the best electrocatalytic activity for H2O2 oxidation. Under optimum conditions, the calibration curve for H2O2 determination on Co0.5Ni0.5Fe2O4/CPE was linear in a wide range of 1.0 × 10−8–1.0 × 10−3 M with low detection limit of 3.0 × 10−9 M (S/N = 3). The proposed Co0.5Ni0.5Fe2O4/CPE was also applied to the determination of H2O2 in commercial toothpastes with satisfactory results, indicating that CoxNi1−xFe2O4 is a promising hydrogen peroxidase mimics for the detection of H2O2.  相似文献   

13.
Liu X  Yin J  Zhu L  Zhao G  Zhang H 《Talanta》2011,85(5):2451-2457
A porous polysulfone microcapsule containing organic modified montmorillonite and magnetic nanoparticles (OMMT-Fe3O4@PSF) has been successfully prepared by a phase-inversion method and evaluated as a magnetic solid-phase extraction (MSPE) sorbent for clean-up and enrichment of 4-chlorophenol (4-CP) and 2-chlorophenol (2-CP) in aqueous samples. Compared with a microcapsule containing the conventional extraction sorbent C18 (C18-Fe3O4@PSF), OMMT-Fe3O4@PSF had much lower cost, a faster adsorption rate, and superior uptake amounts for the investigated analytes. The proposed microcapsule has been developed for the extraction of 4-CP and 2-CP from environmental water samples and their analysis by high-performance liquid chromatography with UV detection (HPLC-UV). Various parameters, such as pH, extraction time, the mass of sorbent, and the desorption conditions, have been evaluated and the calibration curves of the chlorophenols were linear (R2 ≥ 0.9985) in the range from 1.01 to 104.5 ng mL−1. The limits of detection at a signal-to-noise (S/N) ratio of 3 were 0.22 and 0.17 ng mL−1 and the limits of quantification calculated at S/N = 10 were 1.52 and 1.07 ng mL−1 for 2-CP and 4-CP, respectively. The recoveries of 2-CP and 4-CP from natural water and the treated wastewater samples were in the range of 84.4-115% with relative standard deviations (RSDs) lower than 7.0%. The results have demonstrated the suitability of the MSPE approach for the analysis of trace chlorophenols in aqueous samples.  相似文献   

14.
A new method for solid-phase extraction and preconcentration of trace amounts Hg(II) from environmental samples was developed by using sodium dodecyle sulphate-coated magnetite nanoparticles (SDS-coated Fe3O4 NPs) as a new extractant. The procedure is based on the adsorption of the analyte, as mercury-Michler's thioketone [Hg2(TMK)4]2+ complex on the negatively charged surface of the SDS-coated Fe3O4 NPs and then elution of the preconcentrated mercury from the surface of the SDS-coated Fe3O4 NPs prior to its determination by flow injection inductively coupled plasma-optical emission spectrometry. The effects of pH, TMK concentration, SDS and Fe3O4 NPs amounts, eluent type, sample volume and interfering ions on the recovery of the analyte were investigated. Under optimized conditions, the calibration curve was linear in the range of 0.2-100 ng mL−1 with r2 = 0.9994 (n = 8). The limit of detection for Hg(II) determination was 0.04 ng mL−1. Also, relative standard deviation (R.S.D.) for the determination of 2 and 50 ng mL−1 of Hg(II) was 5.2 and 4.7% (n = 6), respectively. Due to the quantitative extraction of Hg(II) from 1000 mL of the sample solution an enhancement factor as large as 1230-fold can be obtained. The proposed method has been validated using a certified reference materials, and also the method has been applied successfully for the determination of Hg(II) in aqueous samples.  相似文献   

15.
An extracting medium based on chitosan–polypyrrole (CS–PPy) magnetic nanocomposite was synthesized by chemical polymerization of pyrrole at the presence of chitosan magnetic nanoparticles (CS-MNPs) for micro-solid phase extraction. In this work, magnetic nanoparticles, the modified CS-MNPs and different types of CS–PPy magnetic nanocomposites were synthesized. Extraction efficiency of the CS–PPy magnetic nanocomposite was compared with the CS-MNPs and Fe3O4 nanoparticles for the determination of naproxen in aqueous samples, via quantification by spectrofluorimetry. The scanning electron microscopy images obtained from all the prepared nanocomposites revealed that the CS–PPy magnetic nanocomposite possess more porous structure. Among different synthesized magnetic nanocomposites, CS–PPy magnetic nanocomposite showed a prominent efficiency. Influencing parameters on the morphology of CS–PPy magnetic nanocomposite such as weight ratio of components was also assayed. In addition, effects of different parameters influencing the extraction efficiency of naproxen including desorption solvent, desorption time, amount of sorbent, ionic strength, sample pH and extraction time were investigated and optimized. Under the optimum condition, a linear calibration curve in the range of 0.04–10 μg mL−1 (R2 = 0.9996) was obtained. The limits of detection (3Sb) and limits of quantification (10Sb) of the method were 0.015 and 0.04 μg mL−1 (n = 3), respectively. The relative standard deviation for water sample spiked with 0.1 μg mL−1 of naproxen was 3% (n = 5) and the absolute recovery was 92%. The applicability of method was extended to the determination of naproxen in tap water, human urine and plasma samples. The relative recovery percentages for these samples were in the range of 56–99%.  相似文献   

16.
Small molecules or analytes present at low concentrations are difficult to detect directly using conventional surface plasmon resonance (SPR) techniques because only small changes in the refractive index of the medium are typically induced by the binding of these analytes. Here, we present an amplification technique using core–shell Fe3O4@Au magnetic nanoparticles (MNPs) for an SPR bioassay. To evaluate this amplification effect, a novel SPR sensor based on a sandwich immunoassay was developed to detect α-fetoprotein (AFP) by immobilizing a primary AFP antibody (Ab1) on the surface of a 3-mercapto-1-propanesulfonate/chitosan-ferrocene/Au NP (MPS/CS-Fc/Au NP) film employing Fe3O4@Au–AFP secondary antibody conjugates (Fe3O4@Au–Ab2) as the amplification reagent. The stepwise fabrication of the biosensor was characterized using UV-vis spectroscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. A calibration curve of Fe3O4@Au–Ab2 conjugates amplification for AFP detection was obtained to yield a correlation in the range of 1.0–200.0 ng mL−1 with a detection limit of 0.65 ng mL−1, and a significant increase in sensitivity was therefore afforded through the use of Fe3O4@Au–Ab2 conjugates as an amplifier. This magnetic separation and amplification strategy has great potential for the detection of other biomolecules of interest with low interference and high sensitivity by changing the antibody label used in the Fe3O4@Au–antibody conjugates.  相似文献   

17.
Jiankun Duan 《Talanta》2009,79(3):734-738
A flow injection online speciation procedure by using micro-column packed with Cu(II) loaded nanometer-sized Al2O3 coupled to inductively coupled plasma mass spectrometry (ICP-MS) for the separation and determination of selenomethionine (SeMet) and selenocystine (SeCys2) has been developed. The main factors affecting the separation and preconcentration of SeMet and SeCys2 including pH value, sample flow rate, eluent concentration, eluent volume and flow rate, and interfering ions have been investigated. It was found that SeCys2 could be selectively retained by micro-column packed with Cu(II) loaded nanometer-sized Al2O3 at pH 4.0, and the retained SeCys2 could be eluted by 1.0 mol L−1 HNO3, while SeMet was not retained and passed through the micro-column directly at this pH. Both SeMet and SeCys2 could be quantitatively adsorbed by the micro-column at pH 9.0, and the retained SeMet and SeCys2 could be easily eluted with 1.0 mol L−1 HNO3. The content of SeMet was obtained by subtracting the SeCys2 from the total content of seleno amino acids. With the enrichment factor of 7.8 and 7.7, the limits of detection (LODs) for SeMet and SeCys2 were found to be 24 pg Se mL−1 and 21 pg Se mL−1, respectively. The relative standard deviations (RSDs) for SeCys2 and SeMet with seven replicate determinations of 1.0 ng mL−1 SeMet and SeCys2, were 2.1% and 1.6%, respectively, the sampling frequency of 8 h−1 was obtained. The proposed method was applied to the speciation of SeMet and SeCys2 in selenized yeast, human urine and serum with satisfactory results.  相似文献   

18.
Iron oxide modified with single- or double-metal additives (Cr, Ni, Zr, Ag, Mo, Mo-Cr, Mo-Ni, Mo-Zr and Mo-Ag), which can store and supply pure hydrogen by reduction of iron oxide with hydrogen and subsequent oxidation of reduced iron oxide with steam (Fe3O4 (initial Fe2O3)+4H2↔3Fe+4H2O), were prepared by impregnation. Effects of various metal additives in the samples on hydrogen production were investigated by the above-repeated redox. All the samples with Mo additive exhibited a better redox performance than those without Mo, and the Mo-Zr additive in iron oxide was the best effective one enhancing hydrogen production from water decomposition. For Fe2O3-Mo-Zr, the average H2 production temperature could be significantly decreased to 276 °C, the average H2 formation rate could be increased to 360.9-461.1 μmol min−1 Fe-g−1 at operating temperature of 300 °C and the average storage capacity was up to 4.73 wt% in four cycles, an amount close to the IEA target.  相似文献   

19.
Porous magnetic composites were prepared by the synthesis of molecular sieve MCM-41 in the presence of Fe3O4 nanoparticles with average diameter of 15 nm. Nanoparticles were captured by porous silica matrix MCM-41, which resulted in their incorporation, as it was confirmed by TEM, SEM and X-ray diffraction. The materials possessed high surface area (392-666 m2 g−1), high pore volume (0.39-0.73 cm3 g−1) along with high magnetic response (MS up to 28.4 emu g−1 at 300 K). Calcination of samples resulted in partial oxidation of Fe3O4 to α-Fe2O3. The influence of nanoparticles content on sorption and magnetic properties of the composites was shown. No hysteresis was found for the samples at 300 K; at 5 K, HC was in the range 370-385 G for non-calcinated samples and 350-356 G for calcinated ones.  相似文献   

20.
The hydrophobic octadecyl (C18) functionalized Fe3O4 magnetic nanoparticles (Fe3O4@C18) were caged into hydrophilic barium alginate (Ba2+-ALG) polymers to obtain a novel type of solid-phase extraction (SPE) sorbents, and the sorbents were applied to the pre-concentration of polycyclic aromatic hydrocarbons (PAHs) and phthalate esters (PAEs) pollutants from environmental water samples. The hydrophilicity of the Ba2+-ALG cage enhances the dispersibility of sorbents in water samples, and the superparamagnetism of the Fe3O4 core facilitates magnetic separation. With the magnetic SPE technique based on the Fe3O4@C18@Ba2+-ALG sorbents, it requires only 30 min to extract trace levels of analytes from 500 mL water samples. After the eluate is condensed to 0.5 mL, concentration factors for both phenanthrene and di-n-propyl-phthalate are over 500, while for other analytes are about 1000. The recoveries of target compounds are independent of salinity and solution pH under testing conditions. Under optimized conditions, the detection limits for phenanthrene, pyrene, benzo[a]anthracene, and benzo[a]pyrene are 5, 5, 3, and 2 ng L−1, and for di-n-propyl-phthalate, di-n-butyl-phthalate, di-cyclohexyl-phthalate, and di-n-octyl-phthalate are 36, 59, 19, and 36 ng L−1, respectively. The spiked recoveries of several real water samples for PAHs and PAEs are in the range of 72-108% with relative standard deviations varying from 1% to 9%, showing good accuracy of the method. The advantages of the new SPE method include high extraction efficiency, short analysis time and convenient extraction procedure. To the best of our knowledge, it is unprecedented that hydrophilic Ba2+-ALG polymer caged Fe3O4@C18 magnetic nanomaterial is used to extract organic pollutants from large volumes of water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号