首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Free nitriles NCCH2R (1a R = CO2Me, 1b R = SO2Ph, and 1c R = COPh) with an acidic alpha-methylene react with acyclic nitrones -O+N(Me)=C(H)R' (2a R' = 4-MeC6H4 and 2b R' = 2,4,6-Me3C6H2), in refluxing CH2Cl2, to afford stereoselectively the E-olefins (NC)(R)C=C(H)R' (3a-3c and 3a'-3c'), whereas, when coordinated at the platinum(II) trans-[PtCl2(NCCH2R)2] complexes (4a R = CO2Me and 4b R = Cl), they undergo cycloaddition to give the (oxadiazoline)-PtII complexes trans-[PtCl2{N=C(CH2R)ON(Me)C(H)R'}2] (R = CO2Me, Cl and R' = 4-MeC6H4, 2,4,6-Me3C6H2) (5a-5d). Upon heating in CH2Cl2, 5a affords the corresponding alkene 3a. The reactions are greatly accelerated when carried out under focused microwave irradiation, particularly in the solid phase (SiO2), without solvent, a substantial increase of the yields being also observed. The compounds were characterized by IR and 1H, 13C, and 195Pt NMR spectroscopies, FAB+-MS, elemental analyses and, in the cases of the alkene (NC)(CO2Me)C=C(H)(4-MeC6H4) 3a and of the oxadiazoline complex trans-[PtCl2{N=C(CH2Cl)ON(Me)C(H)(4-C6H4Me)}2] 5c, also by X-ray diffraction analyses.  相似文献   

2.
[2+3] Cycloaddition of nitrones to the nitrile ligands in the complexes cis- or trans-[PtCl2(PhCN)2] occurs under ligand differentiation and allows for selective synthesis of complexes of the type cis- or trans-[PtCl2(oxadiazoline)(PhCN)]. Microwave irradiation enhances the reaction rates of the cycloaddition considerably and further favours the selectivity towards the mono-cycloadduct with respect to thermal conditions, because the first cycloaddition is accelerated to a higher extent than the second one. Reaction of the trans-substituted mono-oxadiazoline complexes with a nitrone different from the one used for the first cycloaddition step gives access to mixed bis-oxadiazoline compounds of the composition trans-[PtCl2(oxadiazoline-a)(oxadiazoline-b)]. The corresponding cis-configured complexes, however, do not undergo further cycloaddition. All reactions described occur without isomerisation of the stereochemistry around the platinum center, independently of whether thermal or microwave heating is applied.  相似文献   

3.
The metal-mediated iminoacylation of ketoximes R1R2C=NOH (1a R1 = R2 = Me; 1b R1 = Me, R2 = Et; 1c R1R2 = C4H8; 1d R1R2 = C5H10) upon treatment with the platinum(II) complex trans-[PtCl2(NCCH2CO2Me)2] 2a with an organonitrile bearing an acceptor group proceeds under mild conditions in dry CH2Cl2 to give the trans-[PtCl2{NH=C(CH2CO2Me)ON=CR1R2}2] 3a-d isomers in moderate yield. The reaction of those ketoximes with trans-[PtCl2(NCCH2Cl)2] 2b under the same experimental conditions gives a 1 : 1 mixture of the isomers trans/cis-[PtCl2{NH=C(CH2Cl)ON=CR1R2}2] 3e-h and 4e-h in moderate to good yield. These reactions are greatly accelerated by microwave irradiation to give, with higher yields (ca. 75%), the same products which were characterized by IR and 1H, 13C and 195Pt NMR spectroscopies, FAB-MS, elemental analysis for the stable trans isomers, and X-ray diffraction analysis (3f). The diiminoester ligand in 3a was liberated upon reaction of the complex with a diphosphine.  相似文献   

4.
The metal-mediated coupling between coordinated EtCN in the platinum(II) and platinum(IV) complexes cis- and trans-[PtCl(2)(EtCN)(2)], trans-[PtCl(4)(EtCN)(2)], a mixture of cis/trans-[PtCl(4)(EtCN)(2)] or [Ph(3)PCH(2)Ph][PtCl(n)(EtCN)] (n = 3, 5), and dialkyl- and dibenzylhydroxylamines R(2)NOH (R = Me, Et, CH(2)Ph, CH(2)C(6)H(4)Cl-p) proceeds smoothly in CH(2)Cl(2) at 20-25 degrees C and the subsequent workup allowed the isolation of new imino species [PtCl(n){NH=C(Et)ONR(2)}(2)] (n = 2, R = Me, cis-1 and trans-1; Et, cis-2 and trans-2; CH(2)Ph, cis-3 and trans-3; CH(2)C(6)H(4)Cl-p, cis-4 and trans-4; n = 4, R = Me, trans-9; Et, trans-10; CH(2)Ph, trans-11; CH(2)C(6)H(4)Cl-p, trans-12) or [Ph(3)PCH(2)Ph][PtCl(n){NH=C(Et)ONR(2)}] (n = 3, R = Me, 5; Et, 6; CH(2)Ph, 7; CH(2)C(6)H(4)Cl-p, 8; n = 5, R = Me, 13; Et, 14; CH(2)Ph, 15; CH(2)C(6)H(4)Cl-p, 16) in excellent to good (95-80%) isolated yields. The reduction of the Pt(IV) complexes 9-16 with the ylide Ph(3)P=CHCO(2)Me allows the synthesis of Pt(II) species 1-8. The compounds 1-16 were characterized by elemental analyses (C, H, N), FAB-MS, IR, (1)H, (13)C{(1)H}, and (31)P{(1)H} NMR (the latter for the anionic type complexes 5-8 and 13-16) and by X-ray crystallography for the Pt(II) (cis-1, cis-2, and trans-4) and Pt(IV) (15) species. Kinetic studies of addition of R(2)NOH (R = CH(2)C(6)H(4)Cl-p) to complexes [Ph(3)PCH(2)Ph][Pt(II)Cl(3)(EtCN)] and [Ph(3)PCH(2)Ph][Pt(IV)Cl(5)(EtCN)] by the (1)H NMR technique revealed that both reactions are first order in (p-ClC(6)H(4)CH(2))(2)NOH and Pt(II) or Pt(IV) complex, the second-order rate constant k(2) being three orders of magnitude larger for the Pt(IV) complex. The reactions are intermolecular in nature as proved by the independence of k(2) on the concentrations of added EtC triple bond N and Cl(-). These data and the calculated values of Delta H++ and Delta S++ are consistent with the mechanism involving the rate-limiting nucleophilic attack of the oxygen of (p-ClC(6)H(4)CH(2))(2)NOH at the sp-carbon of the C triple bond N bond followed by a fast proton migration.  相似文献   

5.
The alkynyl(vinylidene)rhodium(I) complexes trans-[Rh(C[triple bond, length as m-dash]CR)(=C=CHR)(PiPr3)2] 2, 5, 6 react with CO by migratory insertion to give stereoselectively the butenynyl compounds trans-[Rh{eta1-(Z)-C(=CHR)C[triple bond, length as m-dash]CR}(CO)(PiPr3)2](Z)-7-9, of which (Z)-7 (R=Ph) and (Z)-8 (R=tBu) rearrange upon heating or UV irradiation to the (E) isomers. Similarly, trans-[Rh{eta1-C(=CH2)C[triple bond, length as m-dash]CPh}(CO)(PiPr3)2] 12 and trans-[Rh{eta1-(Z)-C(=CHCO2Me)C[triple bond, length as m-dash]CR}(CO)(PiPr3)2](Z)-15, (Z)-16 have been prepared. At room temperature, the corresponding "non-substituted" derivative trans-[Rh{eta1-C(=CH2)C[triple bond, length as m-dash]CH}(CO)(PiPr3)2] 18 is in equilibrium with the butatrienyl isomer trans-[Rh(eta1-CH=]C=C=CH2)(CO)(PiPr3)2] 19 that rearranges photochemically to the alkynyl complex trans-[Rh(C[triple bond, length as m-dash]CCH=CH2)(CO)(PiPr3)2] 20. Reactions of (Z)-7, (E)-7, (Z)-8 and (E)-8 with carboxylic acids R'CO2H (R'=CH3, CF3) yield either the butenyne (Z)- and/or (E)-RC[triple bond, length as m-dash]CCH=CHR or a mixture of the butenyne and the isomeric butatriene, the ratio of which depends on both R and R'. Treatment of 2 (R=Ph) with HCl at -40 degrees C affords five-coordinate [RhCl(C[triple bond, length as m-dash]CPh){(Z)-CH=CHPh}(PiPr3)2] 23, which at room temperature reacts by C-C coupling to give trans-[RhCl{eta2-(Z)-PhC[triple bond, length as m-dash]CCH=CHPh}(PiPr3)2](Z)-21. The related compound trans-[RhCl(eta2-HC[triple bond, length as m-dash]CCH=CH2)(PiPr3)2] 27, prepared from trans-[Rh(C[triple bond, length as m-dash]CH)(=C=CH2)(PiPr3)2] 17 and HCl, rearranges to the vinylvinylidene isomer trans-[RhCl(=C=CHCH=CH2)(PiPr3)2] 28. While stepwise reaction of 2with CF3CO2H yields, via alkynyl(vinyl)rhodium(III) intermediates (Z)-29 and (E)-29, the alkyne complexes trans-[Rh(kappa1-O2CCF3)(eta2-PhC[triple bond, length as m-dash]CCH=CHPh)(PiPr3)2](Z)-30 and (E)-30, from 2 and CH3CO2H the acetato derivative [Rh(kappa2-O2CCH3)(PiPr3)2] 33 and (Z)-PhC[triple bond, length as m-dash]CCH=]CHPh are obtained. From 6 (R=CO2Me) and HCl or HC[triple bond, length as m-dash]CCO2Me the chelate complexes [RhX(C[triple bond, length as m-dash]CCO2Me){kappa2(C,O)-CH=CHC(OMe)=O}(PiPr3)2] 34 (X=Cl) and 35 (X=C[triple bond, length as m-dash]CCO2Me) have been prepared. In contrast to the reactions of [Rh(kappa2-O2CCH3)(C[triple bond, length as m-dash]CE)(CH=CHE)(PiPr3)2] 37(E=CO2Me) with chloride sources which give, via intramolecular C-C coupling, four-coordinate trans-[RhCl{eta2-(E)-EC[triple bond, length as m-dash]CCH=CHE}(PiPr3)2](E)-36, treatment of 37with HC[triple bond, length as m-dash]CE affords, via insertion of the alkyne into the rhodium-vinyl bond, six-coordinate [Rh(kappa2-O2CCH3)(C[triple bond, length as m-dash]CE){eta1-(E,E)-C(=CHE)CH=CHE}(PiPr3)2] 38. The latter reacts with MgCl2 to yield trans-[RhCl{eta2-(E,E)-EC[triple bond, length as m-dash]CC(=CHE)CH=CHE}(PiPr3)2] 39, which, in the presence of CO, generates the substituted hexadienyne (E,E)-EC[triple bond, length as m-dash]CC(=CHE)CH=CHE 40.  相似文献   

6.
The nitrile ligands in trans-[PtX2(PhCN)2] (X = Cl, Br, I) undergo sequential 1,3 dipolar cycloadditions with nitrones R1R2C=N+(Me)-O(-) (R1 = H, R2 = Ph; R1 = CO2Et, R2 = CH2CO2Et) to selectively form the Delta4-1,2,4-oxadiazoline complexes trans-[PtX2(PhCN) (N=C(Ph)-O-N(Me)-CR1R2)] or trans-[PtX2(N=C(Ph)-O-N(Me)-CR1R2)2] in high yields. The reactivity of the mixed ligand complexes trans-[PtX2(PhCN)(N=C(Ph)-O-N(Me)-CR1R2)] towards oxidation and ligand substitution was studied in more detail. Oxidation with Cl2 or Br2 provides the Pt(IV) species trans-[PtX2Y2(PhCN)(N=C(Ph)-O-N(Me)-CH(Ph))] (X, Y = Cl, Br). The mixed halide complex (X = Cl, Y = Br) undergoes halide scrambling in solution to form trans-[PtX(4-n)Yn(PhCN)(N=C(Ph)-O-N(Me)-CH(Ph))] as a statistical mixture. Ligand substitution in trans-[PtCl2(PhCN)(N=C(Ph)-O-N(Me)-CR1R2)] allows for selective replacement of the coordinated nitrile by nitrogen heterocycles such as pyridine, DMAP or 1-benzyl-2-methylimidazole to produce mixed ligand Pt(II) complexes of the type trans- [PtX2(heterocycle)(N=C(Ph)-O-N(Me)-CR1R2)]. All compounds were characterised by elemental analysis, mass spectrometry, IR and 1H, 13C and 195Pt NMR spectroscopy. Single-crystal X-ray structural analysis of (R,S)-trans-[PtBr2(N=C(Ph)-O-N(Me)-CH(Ph))2] and trans-[PtCl2(C5H5N)(N=C(Ph)-O-N(Me)-CH(Ph))] confirms the molecular structure and the trans configuration of the heterocycles relative to each other.  相似文献   

7.
The nitrile ligands in the platinum(IV) complexes trans-[PtCl4(RCN)2] (R=Me, Et, CH2Ph) and cis/trans-[PtCl4(MeCN)(Me2SO)] are involved in a metalla-Pinner reaction with N-methylbenzohydroxamic acid (N-alkylated form of hydroxamic acid, hydroxamic form; F1), PhC(=O)N(Me)OH, to achieve the imino species [PtCl4[NH=C(R)ON(Me)C(=O)Ph]2 (1-3) and [PtCl4[NH=C(Me)ON(Me)C(=O)Ph](Me2SO)] (7), respectively. Treatment of trans-[PtCl4(RCN)2] (R=Me, Et) and cis/trans-[PtCl4(MeCN)(Me2SO)] with the O-alkylated form of a hydroxamic acid (hydroximic form), i.e. methyl 2,4,6-trimethylbenzohydroximate, 2,4,6-(Me3C6H2)C(OMe)=NOH (F2A), allows the isolation of [PtCl4[NH=C(R)ON=C(OMe)(2,4,6-Me3C6H2)]2] (5, 6) and [PtCl4[NH=C(Me)ON=C(OMe)(2,4,6-Me3C6H2)](Me2SO)] (8), correspondingly. In accord with the latter reaction, the coupling of nitriles in trans-[PtCl4(EtCN)2] with methyl benzohydroximate, PhC(OMe)=NOH (F2B), gives [PtCl4[NH=C(Et)ON=C(OMe)Ph]2] (4). The addition proceeds faster with the hydroximic F2, rather than with the hydroxamic form F1. The complexes 1-8 were characterized by C, H, N elemental analyses, FAB+ mass-spectrometry, IR, 1H and 13C[1H] NMR spectroscopies. The X-ray structure determinations have been performed for both hydroxamic and hydroximic complexes, i.e. 2 and 6, indicating that the imino ligands are mutually trans and they are in the E-configuration.  相似文献   

8.
Reactions of [Pt(PEt(3))(3)] (1) with the silanes HSiPh(3), HSiPh(2)Me and HSi(OEt)(3) led to the products of oxidative addition, cis-[Pt(H)(SiPh(3))(PEt(3))(2)] (2), cis-[Pt(H)(SiPh(2)Me)(PEt(3))(2)] (3), cis-[Pt(H){Si(OEt)(3)}(PEt(3))(2)] (cis-4) and trans-[Pt(H){Si(OEt)(3)}(PEt(3))(2)] (trans-4). The complexes cis-4 and trans-4 can also be generated by hydrogenolysis of (EtO)(3)SiSi(OEt)(3) in the presence of 1. Furthermore, the silyl compounds cis-4 and trans-4 react with B(C(6)F(5))(3) and CH(3)CN by hydride abstraction to give the cationic silyl complex trans-[Pt{Si(OEt)(3)}(NCCH(3))(PEt(3))(2)][HB(C(6)F(5))(3)] (8). In addition, the reactivity of the complexes cis-4, trans-4 and 8 towards alkenes and CO was studied using NMR experiments.  相似文献   

9.
The reaction of vic-dioximes with the organonitrile platinum(IV) complexes trans-[PtCl4(RCN)2] (R = Me, CH2Ph, Ph, vic-dioxime = dimethylglyoxime; R = Me, vic-dioxime = cyclohexa-, cyclohepta-, and cyclooctanedione dioximes) proceeds rapidly under relatively mild conditions and affords products of one-end addition of the dioximes to the nitrile carbon, i.e. [PtC4(NH=C(R)ON=[spacer]=NOH)2] (1-6) (R = Me, CH2Ph, Ph, spacer = C(Me)C-(Me) for dimethylglyoxime; R = Me, spacer = C[C4H8]C, C[C5H10]C, C[C6H12]C for the other dioximes), giving a novel type of metallaligand. All addition compounds were characterized by elemental analyses (C, H, N, C1, Pt), FAB mass spectrometry, and IR and 1H, 13C[1H], and 195Pt NMR spectroscopy. X-ray structure determination of the dimethylformamide bis-solvate [PtCl4(NH=C(Me)ON=C(Me)C(Me)=NOH)2] x 2DMF (la) disclosed its overall trans geometry with the dimethylglyoxime part in anti configuration and the amidine one-end (rather than N,N-bidentate) coordination mode of the N-donor ligands. When a mixture of cis- and trans-[PtC4(MeCN)2] in MeCN was treated with dimethylglyoxime, the formation of, correspondingly, cis- and trans-[PtCl4(NH=C(Me)ON=C(Me)C(Me)=NOH)2] (1) was observed and cis-to-trans isomerization in DMSO-d6 solution was monitored by 1H, 2D [1H,15N] HMQC, and 195Pt NMR spectroscopies. Although performed ab initio calculations give evidence that the trans geometry is the favorable one for the iminoacylated species [PtCl4-(ligand)2], the platinum(IV) complex [PtCl4(NH=C(Me)ON=C[C4Hs]C=NOH)2] (4) was isolated exclusively in cis configuration with the two metallaligand "arms" held together by intramolecular hydrogen bonding between the two peripheral OH groups, as it was proved by single-crystal X-ray diffractometry. The classic substitution products, e.g. [PtC12(N,N-dioximato)2] (12-15), are formed in the addition reaction as only byproducts in minor yield; two of them, [PtCl2(C7H11N2O2)2] (14) and [PtCl2(C8H13N2O2)2] (15), were structurally characterized. Complexes (12-15) were also prepared by reaction of the vic-dioximes with [PtCl4L(Me2SO)] (L = Me2SO, MeCN), but monoximes (Me2C=NOH, [C4H8]C=NOH, [C5H10]C=NOH, PhC(H)=NOH, (OH)C6H4C(H)= NOH) react differently adding to [PtCl4(MeCN)(Me2SO)] to give the corresponding iminoacylated products [PtCl4(NH=C(Me)ON=CRR')(Me2SO)](7-11).  相似文献   

10.
Treatment of trans-[PtCl(4)(RCN)(2)] (R = Me, Et) with R'OH (R' = Me, Et, n-Pr, i-Pr, n-Bu) at 45 degrees C in all cases allowed the isolation of the trans-[PtCl(4)[(E)-NH=C(R)OR'](2)] imino ester complexes, while the reaction between cis-[PtCl(4)(RCN)(2)] and the least sterically hindered alcohols (methanol and ethanol) results in the formation of cis-[PtCl(4)[(E)-NH=C(R)OR'](2)] (R/R' = Me/Me) or trans-[PtCl(4)[(E)-NH=C(Et)OR'](2)] (R' = Me, Et), the latter being formed via thermal isomerization (ROH, reflux, 3 h) of the initially formed corresponding cis isomers. The reaction between alcohols R'OH and cis-[PtCl(4)(RCN)(2)] (R = Me, R' = Et, n-Pr, i-Pr, n-Bu; R = Et; R' = n-Pr, i-Pr, n-Bu), exhibiting greater R/R' steric congestion, allowed the isolation of cis-[PtCl(4)[(E)-NH=C(R)OR'][(Z)-NH=C(R)OR']] as the major products. The alcoholysis reactions of poorly soluble [PtCl(4)(RCN)(2)] (R = CH(2)Ph, Ph) performed under heterogeneous conditions, directly in the appropriate alcohol and for a prolonged time and, for R = Ph, with heating led to trans-[PtCl(4)[(E)-NH=C(R)OR'](2)] (R = CH(2)Ph, R' = Me, Et, n-Pr, i-Pr; R = Ph, R' = Me) isolated in moderate yields. In all of the cases, in contrast to platinum(II) systems, addition of R'OH to the organonitrile platinum(IV) complexes occurs under mild conditions and does not require a base as a catalyst. The formed isomerically pure (imino ester)Pt(IV) complexes can be reduced selectively, by Ph(3)P=CHCO(2)Me, to the corresponding isomers of (imino ester)Pt(II) species, exhibiting antitumor activity, without change in configuration of the imino ester ligands. Furthemore, the imino esters NH=C(R)OR' can be liberated from both platinum(IV) and platinum(II) complexes [PtCl(n)[H=C(R)OR'](2)] (n = 2, 4) by reaction with 1,2-bis(diphenylphosphino)ethane and pyridine, respectively. All of the prepared compounds were characterized by elemental analyses (C, H, N), FAB mass spectrometry, IR, and (1)H, (13)C[(1)H], and (195)Pt (metal complexes) NMR spectroscopies; the E and Z configurations of the imino ester ligands in solution were determined by observation of the nuclear Overhauser effect. X-ray structure determinations were performed for trans-[PtCl(4)[(E)-NH=C(Me)OEt](2)] (2), trans-[PtCl(4)[(E)-NH=C(Et)OEt](2)] (10), trans-[PtCl(4)[(E)-NH=C(Et)OPr-i](2)] (11), trans-[PtCl(4)[(E)-NH=C(Et)OPr-n](2)] (12), and cis-[PtCl(4)[(E)-NH=C(Et)OMe](2)] (14). Ab initio calculations have shown that the EE isomers are the most stable ones for both platinum(II) and platinum(IV) complexes, whereas the most stable configurations for the ZZ isomers are less stable than the respective EZ isomers, indicating an increase of the stability on moving from the ZZ to the EE configurations which is more pronounced for the Pt(IV) complexes than for the Pt(II) species.  相似文献   

11.
The reaction of platinum(IV) complex trans-[PtCl4(EtCN)2] with pyrazoles 3,5-RR'pzH (R/R' = H/H, Me/H, Me/Me) leads to the formation of the trans-[PtCl4{NH=C(Et)(3,5-RR'pz)}2] (1-3) species due to the metal-mediated nitrile-pyrazole coupling. Pyrazolylimino complexes 1-3 (i) completely convert to pyrazole complexes cis-[PtCl4(3,5-RR'pzH)2] by elimination of EtCN upon reflux in a CH2Cl2 solution or upon heating in the solid state; (ii) undergo exchange at the imino C atom with another pyrazole different from that contained in the pyrazolylimino ligand. The reaction of trans-[PtIICl2(EtCN)2] and 3,5-RR'pzH, conducted under conditions similar to those for trans-[PtIVCl4(EtCN)2], is much less selective, and the composition of the products strongly depends on the pyrazole employed: (a) with pzH, the reaction gives a mixture of three products, i.e., [PtCl2NH=C(Et)pz-kappa2N,N}] (4), [PtCl(pzH){NH=C(Et)pz-kappa2N,N}]Cl (5), and [Pt(pzH)2{NH=C(Et)pz-kappa2N,N}]Cl2 (6) (complexes 5 and 6 are rather unstable and gradually transform to trans-[PtCl2(pzH2] and [Pt(pzH)(4)]Cl(2) and free EtCN); (b) with 3,5-Me(2)pzH, the reaction leads to the formation of [PtCl2NH=C(Et)(3,5-Me2pz)-kappa2N,N}] (7) and [PtCl(3,5-Me2pzH)3]Cl (8); (c) in the case of asymmetric pyrazole 3(5)-MepzH, which can be added to EtCN and/or bind metal centers by any of the two nonequivalent nitrogen sites, a broad mixture of currently unidentified products is formed. The reduction of 1-3 with Ph3P=CHCO2Me in CHCl3 allows for the formation of corresponding platinum(II) compounds trans-[PtCl2{NH=C(Et)(3,5-RR'pz)}2] (9-11). Ligands NH=C(Et)(3,5-RR'pz) (12-14) were almost quantitatively liberated from 9-11 with 2 equiv of 1,2-bis-(diphenylphosphino)ethane in CDCl3, giving free imines 12-14 in solution and the precipitate of trans-[Pt(dppe)2](Cl)2. Pyrazolylimines 12-14 undergo splitting in CDCl3 solution at 20-25 degrees C for ca. 20 h to furnish the parent propiononitrile and the pyrazole 3,5-RR'pzH, but they can be synthetically utilized immediately after the liberation.  相似文献   

12.
[PtCl2(RCN)2] (1a R=CH2CO2Me, 1b R=CH2Cl) prepared upon EtCN replacement at [PtCl2(EtCN)2] by the appropriate organonitrile, react with a cyclic nitrone -O-+N=CHCH2CH2C(Me)2, under mild conditions, to give, in an unprecedented single-pot synthesis involving spontaneous N-O bond cleavage, the ketoimino complexes trans-[PtCl2[RC(=O)N=CN(H)C(Me)2-CH2CH2]2 (2a, 2b) with two (pyrrolidin-2-ylidene)amino ligands. The analogous 2c (R=Et) and 2d (R=Ph) are formed by treatment with H2, in the absence of any added catalyst, of the Delta4-1,2,4-oxadiazoline complexes trans-[PtCl2[N=C(R)ONC(Me)2CH2CH2CH]2] (3a R=Et, 3b R=Ph) derived from the [2 + 3]-cycloaddition of the cyclic nitrone with the appropriate organonitrile complex of type 1. The compounds were characterized by elemental analyses, IR, 1H, (13C and 195Pt NMR spectroscopies, FAB mass spectrometry and X-ray structure analyses for 2a and 2d.  相似文献   

13.
Diffusion of ammonia into CH(2)Cl(2) solutions of the dialkylcyanamide complexes cis- or trans-[PtCl(2)(RCN)(2)] (R = NMe(2), NEt(2), NC(5)H(10)) at 20-25 degrees C leads to metal-mediated cyanamide-ammonia coupling to furnish, depending on reaction time, one or another type of novel bisguanidine compound, i.e. the molecular cis- or trans-[PtCl(2){NH=C(NH(2))R}(2)] (cis- and trans-) and the cationic cis- or trans-[Pt(NH(3))(2){NH=C(NH(2))R}(2)](Cl)(2) (cis- and trans-) complexes. Compounds cis- or trans- were converted to cis- or trans-, accordingly, upon prolonged treatment with NH(3) in CH(2)Cl(2). The ammination of the relevant nitrile complexes cis- or trans-[PtCl(2)(RCN)(2)] (R = Et, CH(2)Ph, Ph) in CH(2)Cl(2) solutions affords only the cationic compounds cis- or trans-[Pt(NH(3))(2){NH=C(NH(2))R}(2)](Cl)(2) (cis- and trans-). The formulation of was supported by satisfactory C, H and N elemental analyses, agreeable ESI(+)-MS (or FAB(+)-MS), IR, (1)H and (13)C NMR spectroscopies. The structures of trans-, trans-, cis-, trans-, cis-, and cis- were determined by single-crystal X-ray diffraction disclosing structural features and showing that the ammination gives ligated guanidines and amidines in the E- and Z-forms, respectively, where both correspond to the trans-addition of NH(3) to the nitrile species.  相似文献   

14.
The syntheses of the complexes [PtCl(2)(NCR)L] [R = Me, Et; L = PPh(3); R = Et, L = Py, CO] and [PtCl{(κ(2)-P,C)P(OC(6)H(4))(OPh)(2)}(NCEt)] are described starting from the easily available [PtCl(2)(NCR)(2)]. The stability of the products under different experimental conditions is discussed as well as their use as precursors to dinuclear complexes [Pt(μ-Cl)ClL](2). The crystal and molecular structures of cis-[PtCl(2)(NCEt)(PPh(3))], [SP-4-2]-[PtCl{(κ(2)-P,C)P(OC(6)H(4))(OPh)(2)}(NCEt)] and trans-[Pt(μ-Cl){(κ(2)-P,C)P(OC(6)H(4))(OPh)(2)}](2) are reported.  相似文献   

15.
Treatment of trans-[PtCl(4)(RCN)(2)](R = Me, Et) with the hydrazone oximes MeC(=NOH)C(R')=NNH(2)(R' = Me, Ph) at 45 degrees C in CH(2)Cl(2) led to the formation of trans-[PtCl(4)(NH=C(R)ON=C(Me)C(R')=NNH(2))(2)](R/R' = Me/Ph 1, Et/Me 2, Et/Ph 3) due to the regioselective OH-addition of the bifunctional MeC(=NOH)C(R')=NNH(2) to the nitrile group. The reaction of 3 and Ph(3)P=CHCO(2)Me allows the formation of the Pt(II) complex trans-[PtCl(2)(NH=C(Et)ON=C(Me)C(Ph)=NNH(2))2](4). In 4, the imine ligand was liberated by substitution with 2 equivalents of bis(1,2-diphenylphosphino)ethane (dppe) in CDCl(3) to give, along with the free ligand, the solid [Pt(dppe)(2)]Cl(2). The free iminoacyl hydrazone, having a restricted life-time, decomposes at 20-25 degrees C in about 20 h to the parent organonitrile and the hydrazone oxime. The Schiff condensation of the free NH(2) groups of 4 with aromatic aldehydes, i.e. 2-OH-5-NO(2)-benzaldehyde and 4-NO(2)-benzaldehyde, brings about the formation of the platinum(II) complexes trans-[PtCl(2)(NH=C(Et)ON=C(Me)C(Ph)=NN=CH(C(6)H(3)-2-OH-5-NO(2))2](5) and trans-[PtCl(2)(NH=C(Et)ON=C(Me)C(Ph)=NN=CH(C(6)H(4)-4-NO(2))2](6), respectively, containing functionalized remote peripherical groups. Metallization of 5, which can be considered as a novel type of metallaligand, was achieved by its reaction with M(OAc)(2).nH(2)O (M = Cu, n= 2; M = Co, n= 4) in a 1:1 molar ratio furnishing solid heteronuclear compounds with composition [Pt]:[M]= 1:1. The complexes were characterized by C, H, N elemental analyses, FAB+ mass-spectrometry, IR, 1H, 13C[1H] and (195)Pt NMR spectroscopies; X-ray structures were determined for 3, 4 and 5.  相似文献   

16.
Treatment of the bridging bidentate 1,Z-bis(aminopropyl)-1,Z-dicarba-closo-dodecaborane(12)(1,Z-bis(aminopropyl)-1,Z-carborane) ligands of the type 1,Z-[H(2)N(CH(2))(3)](2)-1,Z-C(2)B(10)H(10)(L(1), Z= 7, 5) or (L(2), Z= 12, 6) with two equivalents of trans-[PtClI(2)(NH(3))](-), followed by halogen ligand metathesis with AgOTf and HCl((aq)) afforded the novel diplatinum(II)-amine species cis-[[PtCl(2)(NH(3))](2)L(n)](7(n= 1) or 8(n= 2), respectively). Similarly, the reaction of L(1) or L(2) with the labile trans-[PtCl(dmf)(NH(3))(2)](+) afforded trans-[[PtCl(NH(3))(2)](2)L(n)](OTf)(2)(9(n= 1) or 10(n= 2), respectively) in good yield and purity. However, isolation of the analogous 1,2-carborane complexes was not possible owing to decomposition reactions that led to extensive degradation of the carborane cage and reduction of the metal centre. The mixed dinuclear complex [cis-[PtCl(2)(NH(3))]-L(1)-trans-[PtCl(NH(3))(2)]]OTf (19) was prepared by treatment of the Boc-protected amine ligand 1-[(Boc)(2)N(CH(2))(3)]-7-[H(2)N(CH(2))(3)]-1,7-C(2)B(10)H(10)(L(3), 15) with trans-[PtCl(dmf)(NH(3))(2)](+) to yield trans-[PtCl(NH(3))(2)L(3)]OTf (16), followed by acid deprotection of the pendant amine group, complexation with trans-[PtClI(2)(NH(3))](-), and halogen ligand metathesis using AgOTf and HCl((aq)). A novel trinuclear species containing 5 was prepared by the addition of two equivalents of 15 to the labile precursor cis-[Pt(dmf)(2)(NH(3))(2)](2+) followed by acid deprotection of the pendant amine groups. Further complexation with two equivalents of trans-[PtClI(2)(NH(3))](-) followed by halogen ligand metathesis using AgOTf and HCl((aq)) afforded the triplatinum(II)-amine species [cis-[Pt(NH(3))(2)(L(1))(2)]-cis-[PtCl(2)(NH(3))](2)](OTf)(2)(23). Complexes 7-10, 19 and 23 represent the first examples of multinuclear platinum(ii)-amine derivatives containing carborane cages. Preliminary in vitro cytotoxicity studies for selected complexes are also reported.  相似文献   

17.
Pt(II)-coordinated NCNR'(2) species are so highly activated towards 1,3-dipolar cycloaddition (DCA) that they react smoothly with the acyclic nitrones ArCH=N(+)(O(-))R' (Ar/R' = C(6)H(4)Me-p/Me; C(6)H(4)OMe-p/CH(2)Ph) in the Z-form. Competitive reactivity study of DCA between trans-[PtCl(2)(NCR)(2)] (R = Ph and NR'(2)) species and the acyclic nitrone 4-MeC(6)H(4)CH=N(+)(O(-))Me demonstrates comparable reactivity of the coordinated NCPh and NCNR'(2), while alkylnitrile ligands do not react with the dipole. The reaction between trans-[PtCl(2)(NCNR'(2))(2)] (R'(2) = Me(2), Et(2), C(5)H(10)) and the nitrones proceed as consecutive two-step intermolecular cycloaddition to give mono-(1a-d) and bis-2,3-dihydro-1,2,4-oxadiazole (2a-d) complexes (Ar/R' = p-tol/Me: R'(2) = Me(2)a, R'(2) = Et(2)b, R'(2) = C(5)H(10)c; Ar/R' = p-MeOC(6)H(4)/CH(2)Ph: R'(2) = Me(2)d). All complexes were characterized by elemental analyses (C, H, N), high resolution ESI-MS, IR, (1)H and (13)C{(1)H} NMR spectroscopy. The structures of trans-1b, trans-2a, trans-2c, and trans-2d were determined by single-crystal X-ray diffraction. Metal-free 5-NR'(2)-2,3-dihydro-1,2,4-oxadiazoles 3a-3d were liberated from the corresponding (dihydrooxadiazole)(2)Pt(II) complexes by treatment with excess NaCN and the heterocycles were characterized by high resolution ESI(+)-MS, (1)H and (13)C{(1)H} spectroscopy.  相似文献   

18.
The reaction between the nitrile complex trans-[PtCl(4)(EtCN)(2)] and benzohydroxamic acids RC(6)H(4)C([double bond]O)NHOH (R = p-MeO, p-Me, H, p-Cl, o-HO) proceeds smoothly in CH(2)Cl(2) at approximately 45 degrees C for 2-3 h (sealed tube) or under focused 300 W microwave irradiation for approximately 15 min at 50 degrees C giving, after workup, good yields of the imino complexes [PtCl(4)[NH[double bond]C(Et)ON[double bond]C(OH)(C(6)H(4)R)](2)] which derived from a novel metalla-Pinner reaction. The complexes [PtCl(4)[NH[double bond]C(Et)ON[double bond]C(OH)(C(6)H(4)R)](2)] were characterized by elemental analyses (C, H, N), FAB mass spectrometry, and IR and (1)H and (13)C[(1)H] spectroscopies, and [PtCl(4)[NH[double bond]C(Et)ON[double bond]C(OH)(Ph)](2)] (as the bis-dimethyl sulfoxide solvate), by X-ray single-crystal diffraction. The latter disclosed its overall trans-configuration with the iminoacyl species in the hydroximic tautomeric form in E-configuration which is held by N[bond]H...N hydrogen bond between the imine [double bond]NH atom and the hydroximic N atom.  相似文献   

19.
Insertion of MeO(2)C-C[triple bond]C-CO(2)Me (DMAD) into the Pd-C bond of the heterodimetallic complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d(dmba-C)] (2) (dppm = Ph(2)PCH(2)PPh(2), dmba-C = metallated dimethylbenzylamine) and [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]e(mu-dppm)P[upper bond 1 end]d(8-mq-C,N)] (3) (8-mq-C,N = cyclometallated 8-methylquinoline) yielded the sigma-alkenyl complexes [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(CO(2)Me)=C(CO(2)Me)(o-C(6)H(4)CH(2)NMe(2))}] (7) and [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(CO(2)Me)[double bond, length as m-dash]C(CO(2)Me)(CH(2)C(9)H(6)N)}] (8), respectively. The latter afforded the adduct [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]e(mu-dppm)P[upper bond 1 end]d{C(CO(2)Me)=C(CO(2)Me)(CH(2)C(9)H(6)N)}(CNBu(t))] (9) upon reaction with 1 equiv. of Bu(t)NC. The heterodinuclear sigma-butadienyl complexes [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(Ph=C(Ph)C(CO(2)Me)=(CO(2)Me)(o-C(6)H(4)CH(2)NMe(2))}] (11) and [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(Ph)=C(CO(2)Et)C(Ph)=C(CO(2)Et)(CH(2)C(9)H(6)N)}] (13) have been obtained by reaction of the metallate K[Fe{Si(OMe)(3)}(CO)(3)(dppm-P)] (dppm = Ph(2)PCH(2)PPh(2)) with [P[upper bond 1 start]dCl{C(Ph)=C(Ph)C(CO(2)Me)=C(CO(2)Me)(o-C(6)H(4)CH(2)N[upper bond 1 end]Me(2))}] or [P[upper bond 1 start]dCl{C(Ph)=C(CO(2)Et)C(Ph)=(CO(2)Et)}(CH(2)C(9)H(6)N[upper bond 1 end])], respectively. Monoinsertion of various organic isocyanides RNC into the Pd-C bond of 2 and 3 afforded the corresponding heterometallic iminoacyl complexes. In the case of complexes [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]e(mu-dppm)P[upper bond 1 end][upper bond 1 start]d{C=(NR)(CH(2)C(9)H(6)N[upper bond 1 end])}] (15a R = Ph, 15b R = xylyl), a static six-membered C,N chelate is formed at the Pd centre, in contrast to the situation in [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(=NR)(o-C(6)H(4)CH(2)NMe(2))}] (14a R = o-anisyl, 14b R = 2,6-xylyl) where formation of a mu-eta(2)-Si-O bridge is preferred over NMe(2) coordination. The outcome of the reaction of the dimetallic alkyl complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]dMe] with RNC depends both on the stoichiometry and the electronic donor properties of the isocyanide employed for the migratory insertion process. In the case of o-anisylisocyanide, the iminoacyl complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(=N-o-anisyl)Me}] (16) results from the reaction in a 1 : 1 ratio. Addition of three equiv. of o-anisylisocyanide affords the tris(insertion) product [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{[C(=N-o-anisyl)](3)Me}] (18). After addition of a fourth equivalent of o-anisylNC, exclusive formation of the isocyanide adduct [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]e(mu-dppm)P[upper bond 1 end]d{[C(=N-o-anisyl)](3)Me}(CN-o-anisyl)] (19) was spectroscopically evidenced. In the complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{[C(=N-o-C(6)H(4)COCH(2))](2)Me}] (20), the sigma-bound diazabutadienyl unit is part of a 12-membered organic macrocyle which results from bis(insertion) of 1,2-bis(2-isocyanophenoxy)ethane into the Pd-Me bond of the precursor complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]dMe]. In contrast, addition of two equivalents of tert-butylisocyanide to a solution of the latter afforded [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]Fe(mu-dppm)P[upper bond 1 end]d{C(=NBu(t))Me}(CNBu(t))] (21) in which both a terminal and an inserted isocyanide ligand are coordinated to the Pd centre. In all cases, there was no evidence for competing CO substitution at the Fe(CO)(3) fragment by RNC. The molecular structures of the insertion products 8 x CH(2)Cl(2) and 16 x CH(2)Cl(2) have been determined by X-ray diffraction.  相似文献   

20.
Treatment of trans-[PtCl(4)(RCN)(2)] (R = Me, Et) with ethanol allowed the isolation of trans-[PtCl(4)[E-NH[double bond]C(R)OEt](2)]. The latter were reduced selectively, by the ylide Ph(3)P[double bond]CHCO(2)Me, to trans-[PtCl(2)[E-NH[double bond]C(R)OEt](2)]. The complexed imino esters NH[double bond]C(R)OEt were liberated from the platinum(II) complexes by reaction with 2 equiv of 1,2-bis(diphenylphosphino)ethane (dppe) in chloroform; the cationic complex [Pt(dppe)(2)]Cl(2) precipitates almost quantitatively from the reaction mixture and can be easily separated by filtration to give a solution of NH[double bond]C(R)OEt with a known concentration of the imino ester. The imino esters efficiently couple with the coordinated nitriles in trans-[PtCl(4)(EtCN)(2)] to give, as the dominant product, [PtCl(4)[NH[double bond]C(Et)N[double bond]C(R)OEt](2)] containing a previously unknown linkage, i.e., ligated N-(1-imino-propyl)-alkylimidic acid ethyl esters. In addition to [PtCl(4)[NH[double bond]C(Et)N[double bond]C(Et)OEt](2)], another compound was generated as the minor product, i.e., [PtCl(4)(EtCN)[NH[double bond]C(Et)N[double bond]C(Et)OEt]], which was reduced to [PtCl(2)(EtCN)[NH[double bond]C(Et)N[double bond]C(Et)OEt]], and this complex was characterized by X-ray single-crystal diffraction. The platinum(IV) complexes [PtCl(4)[NH[double bond]C(Et)N[double bond]C(R)OEt](2)] are unstable toward hydrolysis and give EtOH and the acylamidine complexes trans-[PtCl(4)[Z-NH[double bond]C(Et)NHC(R)[double bond]O](2)], where the coordination to the Pt center results in the predominant stabilization of the imino tautomer NH[double bond]C(Et)NHC(R)[double bond]O over the other form, i.e., NH(2)C(Et)[double bond]NC(R)[double bond]O, which is the major one for free acylamidines. The structures of trans-[PtCl(4)[Z-NH[double bond]C(Et)NHC(R)[double bond]O](2)] (R = Me, Et) were determined by X-ray studies. The complexes [PtCl(4)[NH[double bond]C(Et)N[double bond]C(R)OEt](2)] were reduced to the appropriate platinum(II) compounds [PtCl(2)[NH[double bond]C(Et)N[double bond]C(R)OEt](2)], which, similarly to the appropriate Pt(IV) compounds, rapidly hydrolyze to yield the acylamidine complexes [PtCl(2)[NH[double bond]C(Et)NHC(R)[double bond]O](2)] and EtOH. The latter acylamidine compounds were also prepared by an alternative route upon reduction of the corresponding platinum(IV) complexes. Besides the first observation of the platinum(IV)-mediated nitrile-imine ester integration, this work demonstrates that the application of metal complexes gives new opportunities for the generation of a great variety of imines (sometimes unreachable in pure organic chemistry) in metal-mediated conversions of organonitriles, the "storage" of imino species in the complexed form, and their synthetic utilization after liberation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号