首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Let T be a linear transformation on the set of m × n matrices with entries in an algebraically closed field. If T maps the set of all matrices whose rank is k into itself, and ifn?3k2, then the rank of A is the rank of T(A) for every m × n matrix.  相似文献   

2.
The Schur product of two n×n complex matrices A=(aij), B=(bij) is defined by A°B=(aijbij. By a result of Schur [2], the algebra of n×n matrices with Schur product and the usual addition is a commutative Banach algebra under the operator norm (the norm of the operator defined on Cn by the matrix). For a fixed matrix A, the norm of the operator B?A°B on this Banach algebra is called the Schur multiplier norm of A, and is denoted by ∥Am. It is proved here that ∥A∥=∥U1AU∥m for all unitary U (where ∥·∥ denotes the operator norm) iff A is a scalar multiple of a unitary matrix; and that ∥Am=∥A∥ iff there exist two permutations P, Q, a p×p (1?p?n) unitary U, an (n?p)×(n?p)1 contraction C, and a nonnegative number λ such that
A=λPU00CQ;
and this is so iff ∥A°A?∥=∥A∥2, where ā is the matrix obtained by taking entrywise conjugates of A.  相似文献   

3.
Let pk(A), k=2,…,n, denote the sum of the permanents of all k×k submatrices of the n×n matrix A. A conjecture of Ðokovi?, which is stronger than the famed van der Waerden permanent conjecture, asserts that the functions pk((1?θ)Jn+;θA), k=2,…, n, are strictly increasing in the interval 0?θ?1 for every doubly stochastic matrix A. Here Jn is the n×n matrix all whose entries are equal 1n. In the present paper it is proved that the conjecture holds true for the circulant matrices A=αIn+ βPn, α, β?0, α+;β=1, and A=(nJn?In?Pn)(n?2), where In and Pn are respectively the n×n identify matrix and the n×n permutation matrix with 1's in positions (1,2), (2,3),…, (n?1, n), (n, 1).  相似文献   

4.
5.
We study the weight distribution of irreducible cyclic (n, k) codeswith block lengths n = n1((q1 ? 1)/N), where N|q ? 1, gcd(n1,N) = 1, and gcd(l,N) = 1. We present the weight enumerator polynomial, A(z), when k = n1l, k = (n1 ? 1)l, and k = 2l. We also show how to find A(z) in general by studying the generator matrix of an (n1, m) linear code, V1d over GF(qd) where d = gcd (ordn1(q), l). Specifically we study A(z) when V1d is a maximum distance separable code, a maximal shiftregister code, and a semiprimitive code. We tabulate some numbers Aμ which completely determine the weight distributionof any irreducible cyclic (n1(21 ? 1), k) code over GF(2) for all n1 ? 17.  相似文献   

6.
Let A and B be two n×n non-negative matrices. We write A ? B iff
u1(A ? B)u ? 0
for all column vectors u in Cn. Here u1 is the conjugate transpose of u. In this paper are stated equivalent conditions under which Ak ? Bk for all natural numbers k. The result is then generalized to Hermitian operators in a Hilbert space.  相似文献   

7.
Let Fm×n (m?n) denote the linear space of all m × n complex or real matrices according as F=C or R. Let c=(c1,…,cm)≠0 be such that c1???cm?0. The c-spectral norm of a matrix A?Fm×n is the quantity
6A6ci=Imciσi(A)
. where σ1(A)???σm(A) are the singular values of A. Let d=(d1,…,dm)≠0, where d1???dm?0. We consider the linear isometries between the normed spaces (Fn,∥·∥c) and (Fn,∥·∥d), and prove that they are dual transformations of the linear operators which map L(d) onto L(c), where
L(c)= {X?Fm×n:X has singular values c1,…,cm}
.  相似文献   

8.
For a sequence A = {Ak} of finite subsets of N we introduce: δ(A) = infm?nA(m)2n, d(A) = lim infn→∞ A(n)2n, where A(m) is the number of subsets Ak ? {1, 2, …, m}.The collection of all subsets of {1, …, n} together with the operation a ∪ b, (a ∩ b), (a 1 b = a ∪ b ? a ∩ b) constitutes a finite semi-group N (semi-group N) (group N1). For N, N we prove analogues of the Erdös-Landau theorem: δ(A+B) ? δ(A)(1+(2λ)?1(1?δ(A>))), where B is a base of N of the average order λ. We prove for N, N, N1 analogues of Schnirelmann's theorem (that δ(A) + δ(B) > 1 implies δ(A + B) = 1) and the inequalities λ ? 2h, where h is the order of the base.We introduce the concept of divisibility of subsets: a|b if b is a continuation of a. We prove an analog of the Davenport-Erdös theorem: if d(A) > 0, then there exists an infinite sequence {Akr}, where Akr | Akr+1 for r = 1, 2, …. In Section 6 we consider for N∪, N∩, N1 analogues of Rohrbach inequality: 2n ? g(n) ? 2n, where g(n) = min k over the subsets {a1 < … < ak} ? {0, 1, 2, …, n}, such that every m? {0, 1, 2, …, n} can be expressed as m = ai + aj.Pour une série A = {Ak} de sous-ensembles finis de N on introduit les densités: δ(A) = infm?nA(m)2m, d(A) = lim infn→∞ A(n)2nA(m) est le nombre d'ensembles Ak ? {1, 2, …, m}. L'ensemble de toutes les parties de {1, 2, …, n} devient, pour les opérations a ∪ b, a ∩ b, a 1 b = a ∪ b ? a ∩ b, un semi-groupe fini N, N ou un groupe N1 respectivement. Pour N, N on démontre l'analogue du théorème de Erdös-Landau: δ(A + B) ? δ(A)(1 + (2λ)?1(1?δ(A))), où B est une base de N d'ordre moyen λ. On démontre pour N, N, N1 l'analogue du théorème de Schnirelmann (si δ(A) + δ(B) > 1, alors δ(A + B) = 1) et les inégalités λ ? 2h, où h est l'ordre de base. On introduit le rapport de divisibilité des enembles: a|b, si b est une continuation de a. On démontre l'analogue du théorème de Davenport-Erdös: si d(A) > 0, alors il existe une sous-série infinie {Akr}, où Akr|Akr+1, pour r = 1, 2, … . Dans le Paragraphe 6 on envisage pour N, N, N1 les analogues de l'inégalité de Rohrbach: 2n ? g(n) ? 2n, où g(n) = min k pour les ensembles {a1 < … < ak} ? {0, 1, 2, …, n} tels que pour tout m? {0, 1, 2, …, n} on a m = ai + aj.  相似文献   

9.
If θ is a norm on Cn, then the mapping A→limh↓06I+hA6θ?1/h from Mn(C) (=Cn × n) into R is called the logarithmic derivative induced by the vector norm θ. In this paper we generalize this concept to a mapping γ from Mn(C) into Mk(R), where k ? n. Denoting by α(B) the spectral abscissa of a square matrix B (the largest of the real parts of the eigenvalues), we show, in particular, that α(A) ?α(γ(A)). As a byproduct we obtain simple sufficient conditions for the stability of a matrix.  相似文献   

10.
An n × n matrix A is called involutory iff A2=In, where In is the n × n identity matrix. This paper is concerned with involutory matrices over an arbitrary finite commutative ring R with identity and with the similarity relation among such matrices. In particular the authors seek a canonical set C with respect to similarity for the n × n involutory matrices over R—i.e., a set C of n × n involutory matrices over R with the property that each n × n involutory matrix over R is similar to exactly on matrix in C. Because of the structure of finite commutative rings and because of previous research, they are able to restrict their attention to finite local rings of characteristic a power of 2, and although their main result does not completely specify a canonical set C for such a ring, it does solve the problem for a special class of rings and shows that a solution to the general case necessarily contains a solution to the classically unsolved problem of simultaneously bringing a sequence A1,…,Av of (not necessarily involutory) matrices over a finite field of characteristic 2 to canonical form (using the same similarity transformation on each Ai). (More generally, the authors observe that a theory of similarity fot matrices over an arbitrary local ring, such as the well-known rational canonical theory for matrices over a field, necessarily implies a solution to the simultaneous canonical form problem for matrices over a field.) In a final section they apply their results to find a canonical set for the involutory matrices over the ring of integers modulo 2m and using this canonical set they are able to obtain a formula for the number of n × n involutory matrices over this ring.  相似文献   

11.
Let D(TN) be the class of real-valued, infinitely differentiable, periodic functions, and let D′(TN) be the class of real-valued distributions on TN having D(TN) as its test functions. Define A(TN) ? D(TN) as follows: S is in A(TN) if there is a constant K such that ¦ S^(m)¦ ? K for all m, and, furthermore, limmin(|m1|,…,|mN|)←∞|S^(m)|=0. For 0 < ξ < 12, let C(ξ) be the familiar Cantor set with constant ratio of dissection ξ, constructed on the interval [?π, π). The following result is established: A necessary and sufficient condition thatC(ξ1) × … × C(ξN)be a set of uniqueness for the classA(TN)is that eachξj?1be anJnumber forj = 1,…, N.  相似文献   

12.
Let Mm,n(F) denote the space of all mXn matrices over the algebraically closed field F. A subspace of Mm,n(F), all of whose nonzero elements have rank k, is said to be essentially decomposable if there exist nonsingular mXn matrices U and V respectively such that for any element A, UAV has the form
UAV=A1A2A30
where A1 is iX(k–i) for some i?k. Theorem: If K is a space of rank k matrices, then either K is essentially decomposable or dim K?k+1. An example shows that the above bound on non-essentially-decomposable spaces of rank k matrices is sharp whenever n?2k–1.  相似文献   

13.
14.
Let F=GF(q) denote the finite field of order q, and let ?(x)?F[x]. Then f(x) defines, via substitution, a function from Fn×n, the n×n matrices over F, to itself. Any function ?:Fn×n → Fn×n which can be represented by a polynomialf(x)?F[x] is called a scalar polynomial function on Fn×n. After first determining the number of scalar polynomial functions on Fn×n, the authors find necessary and sufficient conditions on a polynomial ?(x) ? F[x] in order that it defines a permutation of (i) Dn, the diagonalizable matrices in Fn×n, (ii)Rn, the matrices in Fn×n all of whose roots are in F, and (iii) the matric ring Fn×n itself. The results for (i) and (ii) are valid for an arbitrary field F.  相似文献   

15.
Using a Poincaré compactification, the linear homogeneous system of delay equations {x = Ax(t ? 1) (A is an n × n real matrix) induces a delay system π(A) on the sphere Sn. The points at infinity belong to an invariant submanifold Sn ? 1 of Sn. For an open and dense set of 2 × 2 matrices A with distinct eigenvalues, the system π(A) has only hyperbolic critical points (including the critical points at infinity). For an open and dense set of 2 × 2matrices A with complex eigenvalues, the nonwandering set at infinity is the union of an odd number of hyperbolic periodic orbits; if (detA)12 < 2, the restriction of π(A) to S1 is Morse-Smale. For n = 1 there exist periodic orbits of period 4 provided that ?A > π2 and Hopf bifurcation of a center occurs for ?A near (π2) + 2kπ, k ? Z.  相似文献   

16.
Let A be the Clifford algebra constructed over a quadratic n-dimensional real vector space with orthogonal basis {e1,…, en}, and e0 be the identity of A. Furthermore, let Mk(Ω;A) be the set of A-valued functions defined in an open subset Ω of Rm+1 (1 ? m ? n) which satisfy Dkf = 0 in Ω, where D is the generalized Cauchy-Riemann operator D = ∑i = 0m ei(??xi) and k? N. The aim of this paper is to characterize the dual and bidual of Mk(Ω;A). It is proved that, if Mk(Ω;A) is provided with the topology of uniform compact convergence, then its strong dual is topologically isomorphic to an inductive limit space of Fréchet modules, which in its turn admits Mk(Ω;A) as its dual. In this way, classical results about the spaces of holomorphic functions and analytic functionals are generalized.  相似文献   

17.
Let A, B be n × n matrices with entries in a field F. We say A and B satisfy property D if B or Bt is diagonally similar to A. It is clear that if A and B satisfy property D, then they have equal corresponding principal minors, of all orders. The question is to what extent the converse is true. There are examples which show the converse is not always true. We modify the problem slightly and give conditions on a matrix A which guarantee that if B is any matrix which has the same principal minors as A, then A and B will satisfy property D. These conditions on A are formulated in terms of ranks of certain submatrices of A and the concept of irreducibility.  相似文献   

18.
Let Fn denote the ring of n×n matrices over the finite field F=GF(q) and let A(x)=ANxN+ ?+ A1x+A0?Fn[x]. A function ?:Fn→Fn is called a right polynomial function iff there exists an A(x)?Fn[x] such that ?(B)=ANBN+?+A1B+ A0 for every B?Fn. This paper obtains unique representations for and determines the number of right polynomial functions.  相似文献   

19.
Let U3 be the set of all 3 × 3 unitary matrices, and let A and B be two 3 × 3 complex nor?al matrices. In this note, the authors first give a necessary and sufficient condition for a 3 × 3 doubly stochastic matrix to be orthostochastic and then use this result to consider the structure of the sets W (A) = {Diag UAU1 : UU3} and W(A,B) = {Tr UAU1B: UU3}, where 1 denotes the transpose conjugate.  相似文献   

20.
The permanent function is used to determine geometrical properties of the set Ωn of all n × n nonnegative doubly stochastic matrices. If F is a face of Ωn, then F corresponds to an n × n (0, 1)-matrix A, where the permanent of A is the number of vertices of F. If A is fully indecomposable, then the dimension of F equals σ(A) ? 2n + 1, where σ(A) is the number of 1's in A. The only two-dimensional faces of Ωn are triangles and rectangles. For n ? 6, Ωn has four types of three-dimensional faces. The facets of the faces of Ωn are characterized. Faces of Ωn which are simplices are determined. If F is a face of Ωn which is two-neighborly but not a simplex, then F has dimension 4 and six vertices. All k-dimensional faces with k + 2 vertices are determined. The maximum number of vertices of a k-dimensional face is 2k. All k-dimensional faces with at least 2k?1 + 1 vertices are determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号