首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let Mm,n(F) denote the space of all mXn matrices over the algebraically closed field F. A subspace of Mm,n(F), all of whose nonzero elements have rank k, is said to be essentially decomposable if there exist nonsingular mXn matrices U and V respectively such that for any element A, UAV has the form
UAV=A1A2A30
where A1 is iX(k–i) for some i?k. Theorem: If K is a space of rank k matrices, then either K is essentially decomposable or dim K?k+1. An example shows that the above bound on non-essentially-decomposable spaces of rank k matrices is sharp whenever n?2k–1.  相似文献   

2.
For an n × n Hermitean matrix A with eigenvalues λ1, …, λn the eigenvalue-distribution is defined by G(x, A) := 1n · number {λi: λi ? x} for all real x. Let An for n = 1, 2, … be an n × n matrix, whose entries aik are for i, k = 1, …, n independent complex random variables on a probability space (Ω, R, p) with the same distribution Fa. Suppose that all moments E | a | k, k = 1, 2, … are finite, Ea=0 and E | a | 2. Let
M(A)=σ=1s θσPσ(A,A1)
with complex numbers θσ and finite products Pσ of factors A and A1 (= Hermitean conjugate) be a function which assigns to each matrix A an Hermitean matrix M(A). The following limit theorem is proved: There exists a distribution function G0(x) = G1x) + G2(x), where G1 is a step function and G2 is absolutely continuous, such that with probability 1 G(x, M(Ann12)) converges to G0(x) as n → ∞ for all continuity points x of G0. The density g of G2 vanishes outside a finite interval. There are only finitely many jumps of G1. Both, G1 and G2, can explicitly be expressed by means of a certain algebraic function f, which is determined by equations, which can easily be derived from the special form of M(A). This result is analogous to Wigner's semicircle theorem for symmetric random matrices (E. P. Wigner, Random matrices in physics, SIAM Review9 (1967), 1–23). The examples ArA1r, Ar + A1r, ArA1r ± A1rAr, r = 1, 2, …, are discussed in more detail. Some inequalities for random matrices are derived. It turns out that with probability 1 the sharpened form
lim supn→∞i=1ni(n)|2?6An62? 0.8228…
of Schur's inequality for the eigenvalues λi(n) of An holds. Consequently random matrices do not tend to be normal matrices for large n.  相似文献   

3.
Let Fm×n (m?n) denote the linear space of all m × n complex or real matrices according as F=C or R. Let c=(c1,…,cm)≠0 be such that c1???cm?0. The c-spectral norm of a matrix A?Fm×n is the quantity
6A6ci=Imciσi(A)
. where σ1(A)???σm(A) are the singular values of A. Let d=(d1,…,dm)≠0, where d1???dm?0. We consider the linear isometries between the normed spaces (Fn,∥·∥c) and (Fn,∥·∥d), and prove that they are dual transformations of the linear operators which map L(d) onto L(c), where
L(c)= {X?Fm×n:X has singular values c1,…,cm}
.  相似文献   

4.
Let A be an arragement of n lines in the plane. Suppose that F1,…,Fr are faces of A and that V,…,Vs are vertices of A. Suppose also that each Fi is a (Vj) of the lines of A intersect at Vj. Then we show that
i=1rt(Fi + j=1st(Vj)?n+4r2+s2+ 2rs
.  相似文献   

5.
Let ρ21,…,ρ2p be the squares of the population canonical correlation coefficients from a normal distribution. This paper is concerned with the estimation of the parameters δ1,…,δp, where δi = ρ2i(1 ? ρ2i), i = 1,…,p, in a decision theoretic way. The approach taken is to estimate a parameter matrix Δ whose eigenvalues are δ1,…,δp, given a random matrix F whose eigenvalues have the same distribution as r2i(1 ? r2i), i = 1,…,p, where r1,…,rp are the sample canonical correlation coefficients.  相似文献   

6.
Let Ω = {1, 0} and for each integer n ≥ 1 let Ωn = Ω × Ω × … × Ω (n-tuple) and Ωnk = {(a1, a2, …, an)|(a1, a2, … , an) ? Ωnand Σi=1nai = k} for all k = 0,1,…,n. Let {Ym}m≥1 be a sequence of i.i.d. random variables such that P(Y1 = 0) = P(Y1 = 1) = 12. For each A in Ωn, let TA be the first occurrence time of A with respect to the stochastic process {Ym}m≥1. R. Chen and A.Zame (1979, J. Multivariate Anal. 9, 150–157) prove that if n ≥ 3, then for each element A in Ωn, there is an element B in Ωn such that the probability that TB is less than TA is greater than 12. This result is sharpened as follows: (I) for n ≥ 4 and 1 ≤ kn ? 1, each element A in Ωnk, there is an element B also in Ωnk such that the probability that TB is less than TA is greater than 12; (II) for n ≥ 4 and 1 ≤ kn ? 1, each element A = (a1, a2,…,an) in Ωnk, there is an element C also in Ωnk such that the probability that TA is less than TC is greater than 12 if n ≠ 2m or n = 2m but ai = ai + 1 for some 1 ≤ in?1. These new results provide us with a better and deeper understanding of the fair coin tossing process.  相似文献   

7.
This paper presents sufficient conditions for the existence of a nonnegative and stable equilibrium point of a dynamical system of Volterra type, (1) (ddt) xi(t) = ?xi(t)[fi(x1(t),…, xn(t)) ? qi], i = 1,…, n, for every q = (q1,…, qn)T?Rn. Results of a nonlinear complementarity problem are applied to obtain the conditions. System (1) has a nonnegative and stable equilibrium point if (i) f(x) = (f1(x),…,fn(x))T is a continuous and differentiable M-function and it satisfies a certain surjectivity property, or (ii), f(x) is continuous and strongly monotone on R+0n.  相似文献   

8.
We determine the maximum size of a family of subsets in {1, 2,…, n} with the property that if A1, A2, A3,… are any members of the family with ∩Ai = ?, then ∪Ai = {1, 2,…, n}.  相似文献   

9.
In this paper, the problem of phase reconstruction from magnitude of multidimensional band-limited functions is considered. It is shown that any irreducible band-limited function f(z1…,zn), zi ? C, i=1, …, n, is uniquely determined from the magnitude of f(x1…,xn): | f(x1…,xn)|, xi ? R, i=1,…, n, except for (1) linear shifts: i(α1z1+…+αn2n+β), β, αi?R, i=1,…, n; and (2) conjugation: f1(z11,…,zn1).  相似文献   

10.
The multiparameter eigenvalue problem Wm(λ) xm = xm, Wm(λ) = Tm + n = 1k λnVmn, m = 1,…, k, where /gl /gE Ck, xm is a nonzero element of the separable Hilbert space Hm, and Tm and Vmn are compact symmetric is studied. Various properties, including existence and uniqueness, of λ = λi ? Ck for which the imth greatest eigenvalue of Wm(λi) equals one are proved. “Right definiteness” is assumed, which means positivity of the determinant with (m, n)th entry (ym, Vmnym) for all nonzero ym?Hm, m = 1 … k. This gives a “Klein oscillation theorem” for systems of an o.d.e. satisfying a definiteness condition that is usefully weaker than in previous such results. An expansion theorem in terms of the corresponding eigenvectors xmi is also given, thereby connecting the abstract oscillation theory with a result of Atkinson.  相似文献   

11.
Let p, q be arbitrary parameter sets, and let H be a Hilbert space. We say that x = (xi)i?q, xi ? H, is a bounded operator-forming vector (?HFq) if the Gram matrixx, x〉 = [(xi, xj)]i?q,j?q is the matrix of a bounded (necessarily ≥ 0) operator on lq2, the Hilbert space of square-summable complex-valued functions on q. Let A be p × q, i.e., let A be a linear operator from lq2 to lp2. Then exists a linear operator ǎ from (the Banach space) HFq to HFp on D(A) = {x:x ? HFq, A〈x, x〉12 is p × q bounded on lq2} such that y = ǎx satisfies yj?σ(x) = {space spanned by the xi}, 〈y, x〉 = Ax, x〉 and 〈y, y〉 = A〈x, x〉12(A〈x, x〉12)1. This is a generalization of our earlier [J. Multivariate Anal.4 (1974), 166–209; 6 (1976), 538–571] results for the case of a spectral measure concentrated on one point. We apply these tools to investigate q-variate wide-sense Markov processes.  相似文献   

12.
13.
For a sequence A = {Ak} of finite subsets of N we introduce: δ(A) = infm?nA(m)2n, d(A) = lim infn→∞ A(n)2n, where A(m) is the number of subsets Ak ? {1, 2, …, m}.The collection of all subsets of {1, …, n} together with the operation a ∪ b, (a ∩ b), (a 1 b = a ∪ b ? a ∩ b) constitutes a finite semi-group N (semi-group N) (group N1). For N, N we prove analogues of the Erdös-Landau theorem: δ(A+B) ? δ(A)(1+(2λ)?1(1?δ(A>))), where B is a base of N of the average order λ. We prove for N, N, N1 analogues of Schnirelmann's theorem (that δ(A) + δ(B) > 1 implies δ(A + B) = 1) and the inequalities λ ? 2h, where h is the order of the base.We introduce the concept of divisibility of subsets: a|b if b is a continuation of a. We prove an analog of the Davenport-Erdös theorem: if d(A) > 0, then there exists an infinite sequence {Akr}, where Akr | Akr+1 for r = 1, 2, …. In Section 6 we consider for N∪, N∩, N1 analogues of Rohrbach inequality: 2n ? g(n) ? 2n, where g(n) = min k over the subsets {a1 < … < ak} ? {0, 1, 2, …, n}, such that every m? {0, 1, 2, …, n} can be expressed as m = ai + aj.Pour une série A = {Ak} de sous-ensembles finis de N on introduit les densités: δ(A) = infm?nA(m)2m, d(A) = lim infn→∞ A(n)2nA(m) est le nombre d'ensembles Ak ? {1, 2, …, m}. L'ensemble de toutes les parties de {1, 2, …, n} devient, pour les opérations a ∪ b, a ∩ b, a 1 b = a ∪ b ? a ∩ b, un semi-groupe fini N, N ou un groupe N1 respectivement. Pour N, N on démontre l'analogue du théorème de Erdös-Landau: δ(A + B) ? δ(A)(1 + (2λ)?1(1?δ(A))), où B est une base de N d'ordre moyen λ. On démontre pour N, N, N1 l'analogue du théorème de Schnirelmann (si δ(A) + δ(B) > 1, alors δ(A + B) = 1) et les inégalités λ ? 2h, où h est l'ordre de base. On introduit le rapport de divisibilité des enembles: a|b, si b est une continuation de a. On démontre l'analogue du théorème de Davenport-Erdös: si d(A) > 0, alors il existe une sous-série infinie {Akr}, où Akr|Akr+1, pour r = 1, 2, … . Dans le Paragraphe 6 on envisage pour N, N, N1 les analogues de l'inégalité de Rohrbach: 2n ? g(n) ? 2n, où g(n) = min k pour les ensembles {a1 < … < ak} ? {0, 1, 2, …, n} tels que pour tout m? {0, 1, 2, …, n} on a m = ai + aj.  相似文献   

14.
A technique for the numerical approximation of matrix-valued Riemann product integrals is developed. For a ? x < y ? b, Im(x, y) denotes
χyχv2?χv2i=1mF(νi)dν12?dνm
, and Am(x, y) denotes an approximation of Im(x, y) of the form
(y?x)mk=1naki=1mF(χik)
, where ak and yik are fixed numbers for i = 1, 2,…, m and k = 1, 2,…, N and xik = x + (y ? x)yik. The following result is established. If p is a positive integer, F is a function from the real numbers to the set of w × w matrices with real elements and F(1) exists and is continuous on [a, b], then there exists a bounded interval function H such that, if n, r, and s are positive integers, (b ? a)n = h < 1, xi = a + hi for i = 0, 1,…, n and 0 < r ? s ? n, then
χr?χs(I+F dχ)?i=rsI+j=1pIji?1i)
=hpH(χr?1s)+O(hp+1)
Further, if F(j) exists and is continuous on [a, b] for j = 1, 2,…, p + 1 and A is exact for polynomials of degree less than p + 1 ? j for j = 1, 2,…, p, then the preceding result remains valid when Aj is substituted for Ij.  相似文献   

15.
Let A be an n-square normal matrix over C, and Qm, n be the set of strictly increasing integer sequences of length m chosen from 1,…, n. For α,βQm, n denote by A[α|β] the submatrix obtained from A by using rows numbered α and columns numbered β. For k∈{0,1,…,m} write z.sfnc;αβ|=k if there exists a rearrangement of 1,…,m, say i1,…,ik, ik+1,…,im, such that α(ij)=β(ij), j=1,…,k, and {α(ik+1),…,α(im)};∩{β(ik+1),…,β(im)}=ø. Let
be the group of n-square unitary matrices. Define the nonnegative number
?k(A)= maxU∈|det(U1AU) [α|β]|
, where |αβ|=k. Theorem 1 establishes a bound for ?k(A), 0?k<m?1, in terms of a classical variational inequality due to Fermat. Let A be positive semidefinite Hermitian, n?2m. Theorem 2 leads to an interlacing inequality which, in the case n=4, m=2, resolves in the affirmative the conjecture that
?m(A)??m?1(A)????0(A)
.  相似文献   

16.
Let X1, …, Xn be n disjoint sets. For 1 ? i ? n and 1 ? j ? h let Aij and Bij be subsets of Xi that satisfy |Aij| ? ri and |Bij| ? si for 1 ? i ? n, 1 ? j ? h, (∪i Aij) ∩ (∪i Bij) = ? for 1 ? j ? h, (∪i Aij) ∩ (∪i Bil) ≠ ? for 1 ? j < l ? h. We prove that h?Πi=1nri+siri. This result is best possible and has some interesting consequences. Its proof uses multilinear techniques (exterior algebra).  相似文献   

17.
Let a complex pxn matrix A be partitioned as A′=(A1,A2,…,Ak). Denote by ?(A), A′, and A? respectively the rank of A, the transpose of A, and an inner inverse (or a g-inverse) of A. Let A(14) be an inner inverse of A such that A(14)A is a Hermitian matrix. Let B=(A(14)1,A(14)2,…,Ak(14)) and ρ(A)=i=1kρ(Ai).Then the product of nonzero eigenvalues of BA (or AB) cannot exceed one, and the product of nonzero eigenvalues of BA is equal to one if and only if either B=A(14) or Ai>Aj1=0 for all ij,i, j=1,2,…,k . The results of Lavoie (1980) and Styan (1981) are obtained as particular cases. A result is obtained for k=2 when the condition ρ(A)=i=1kρ(Ai) is no longer true.  相似文献   

18.
Let?(x1,…,xp) be a polynomial in the variables x1,…,xp with nonnegative real coefficients which sum to one, let A1,…,Ap be stochastic matrices, and let ??(A1,…,Ap) be the stochastic matrix which is obtained from ? by substituting the Kronecker product of An11,…,Anppfor each term Xn11·?·Xnpp. In this paper, we present necessary and sufficient conditions for the Cesàro limit of the sequence of the powers of ??(A1,…,Ap) to be equal to the Kronecker product of the Cesàro limits associated with each of A1,…,Ap. These conditions show that the equality of these two matrices depends only on the number of ergodic sets under??(A1,…,Ap) and?or the cyclic structure of the ergodic sets under A1,…,Ap, respectively. As a special case of these results, we obtain necessary and sufficient conditions for the interchangeability of the Kronecker product and the Cesàro limit operator.  相似文献   

19.
For n a positive integer and A1, A2, …, Ak sets of nonnegative integers, sufficient conditions are found which imply that the sum of the cardinalities of the sets {1, 2, …, n} ? Ai (i = 1, 2, …, k) does not exceed the cardinality of the intersection of {1, 2, …, n} and the number theoretic sum of the k sets. Some of the results are generalized to sets of m-tuples of nonnegative integers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号