首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Amino acid bridged dicatechol ligands 3a-e-H4 form dinuclear double-stranded coordination compounds [(3a-e)2Ti2(OCH3)2]2- with titanium(IV) ions. Due to the directionality of the ligands, the chirality of the strand, and the chiral complex units, up to seven isomers, I-VII, can be obtained for the double-stranded complexes of ligands 3a-e-H4. The composition of the mixture of isomeric compounds in solution is strongly dependent on the conditions of complex formation. Under thermodynamic control, only a few isomers are obtained, one of which is the major component of the mixture. X-ray structure analyses were performed for K2[(3b)2Ti2(OH)2] and K2[(3d)2Ti2(OH)2] (type I), and for the meso complex Na2[(3e)(3e')Ti2(OCH3)2]. A conformational analysis that uses Ramachandrans method revealed that the conformation of the amino acids in the ligand strands can be compared with those found for amino acids in helical peptide structures. The most favored isomer of [(3)2Ti2(OCH3)2]2- appears to be of type I, with the catecholamide unit located at the N terminus of the ligand strand that binds to a lambda-configurated titanium(IV) complex unit and the dihydroxybenzyl group at the C terminus that coordinates to a delta-configurated titanium(IV) complex unit. The lambda configuration at the N terminus induces the conformation of a right-handed helix in the amino acid residue, while the delta configuration induces the less favored left-handed helix.  相似文献   

2.
The Staudinger reaction of the imidazolin-2-ylidenes, 1,3-di-tert-butylimidazolin-2-ylidene (1a), 1,3-diisopropylimidazolin-2-ylidene (1b), 1,3-diisopropyl-4,5-dimethylimidazolin-2-ylidene (1c), 1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene (1d) and 1,3-bis(2,6-diisopropylphenylimidazolin-2-ylidene (1e), with trimethylsilyl azide furnishes the corresponding N-silylated 2-iminoimidazolines 2a-e, which react with [(eta-C5H5)TiCl3] to afford half-sandwich cyclopentadienyl titanium complexes of the type [CpTi(L)Cl2] (3) (L = imidazolin-2-iminato ligand). Similarly, the reactions of 1,3-di-tert-butyl-2-(trimethylsilylimino)imidazoline (2a) with [(eta-tBuC5H4)TiCl3] results in the formation of [(eta-tBuC5H4)Ti(L)Cl2] (4) (L = 1,3-di-tert-butylimidazolin-2-imide). Bis(1,3-di-tert-butylimidazolin-2-iminato)titanium dichloride (5) is obtained from the reaction of two eq. of 2a with TiCl4. Treatment of 5 with methyllithium results in the formation of the corresponding dimethyl complex [L2Ti(CH3)2] (6), whereas [CpTi(L)(CH3)2] (7) is similarly obtained from 3a. The molecular structures of 3a, 3b, 3c, 3e x C7H8, 4 and 7 are reported revealing linearly coordinated imidazolin-2-iminato ligands together with very short Ti-N bond distances. All dichloro complexes (3a-e, 4 and 5) can be activated with methylaluminoxane (MAO) to give active catalysts for ethylene homopolymerization. In most cases, moderate to high activities are observed together with the formation of high (HMWPE) or even ultra high molecular weight polyethylene (UHMWPE).  相似文献   

3.
The preparation and structural characterization of a series of group 4 complexes supported by 2,2'-phenylphosphinobis(4,6-di-tert-butylphenolate) ([OPO]2-) are described. The reaction of either H2[OPO] with Ti(OR)4 (R = Et, iPr) or Li2[OPO] with TiCl4(THF)2 produced yellowish-orange crystals of Ti[OPO]2, regardless of the stoichiometry of the starting materials employed. Comproportionation of the bis-ligand complex Ti[OPO]2 with 1 equiv of TiCl4(THF)2 led to the formation of [OPO]TiCl2(THF) as brownish-red crystals. Surprisingly, treatment of H2[OPO] with [(Me3Si)2N]2MCl2 (M = Zr, Hf), irrespective of the molar ratio, generated colorless crystals of the corresponding bis-ligand complex [OPO]2M(OH2) as an aqua adduct. The solution and solid-state structures of these group 4 complexes were all characterized by multinuclear NMR spectroscopy and X-ray crystallography, respectively.  相似文献   

4.
Titanium tetrachloride reacts with 2,6-bis[(1-phenylimino)ethyl]pyridine, 1, and 2,6-bis[1-(2,6-diisopropylphenylimino)ethyl]pyridine, 2, giving the adducts of general formulae [Ti1Cl3]Cl, 3, and [Ti2Cl3]Cl, 6, the latter through the intermediacy of the covalently bonded [Ti2Cl4], 4. Heating 6 leads to reduction to the titanium(III) derivative [Ti2Cl3], 12, the latter characterized by X-ray diffraction methods. The reaction of [Ti1Cl3]Cl with a toluene solution of MAO proceeds with methylation at the ortho-position of the pyridine ring to give the titanium(iv) derivative [Ti(C22H21N3)Cl3], 8. The reaction of [Ti2Cl3]Cl with MAO gives a mixture of products containing [Ti2Cl2(OAlCl3)], 9. Compound 9, which has been prepared independently by reacting 6 with AlOCl, is a rare case of a compound containing the -OAlCl3 moiety, as shown by a single-crystal X-ray diffraction study. From the tetrachlorides of zirconium and hafnium with 1 or 2, the corresponding adducts [M(L)Cl4] have been obtained in high yields. These derivatives of Group 4 metals act as ethylene polymerization catalytic precursors: the substitution of the phenyl ring of the imino fragment strongly influences the catalytic activity which is 5,544 kg(PE) mol(Ti)(-1) h(-1) in the case of 3 and 267 kg(PE) mol(Ti)(-1) h(-1) with 6. Catalytic activity has been observed for zirconium and hafnium too, the activity decreasing from zirconium to hafnium, under comparable conditions.  相似文献   

5.
Herein we present an improved synthesis of 5,5'-diamino-2,2'-bipyridine (1) starting from the pyrrole-protected aminopyridine 4. By standard reactions 1 can easily be transformed into the imine- or amide-bridged dicatechol-bipyridine ligands L1-H4 and L2-H4. Whereas ligand L1 readily forms homodinuclear helicates [(L1)3Ti2]4-, the attempted formation of mono-, tri-, or even oligonuclear coordination compounds from this ligand did not work. However, the amide-connected ligand L2 affords mononuclear ([(L2-H4)PdCl2], [(L2-H4)3Zn]2+), dinuclear ([(L2)3Ti2]4-), and heterotrinuclear coordination compounds ([(L2)3Ti2Zn]2-).  相似文献   

6.
The first phosphonate anions of aluminum-containing fluorine and an anionic bridged fluoroalkoxy derivative of titanium have been realized using n-Bu4NHF2 as a fluorinating agent in organometallic synthesis. Reactions of [RPO3AlMe]4 [R = Ph (1), t-Bu] with n-Bu4NHF2 yield organic-soluble compounds of the type [n-Bu4N]2[RPO3AlF2]2 [R = Ph (2), t-Bu (3)], whereas the reaction of Ti(O-i-Pr)4 with n-Bu4NHF2 results in the formation of [n-Bu4N][O-i-Pr)3Ti(mu-F)2(mu-O-i-Pr)Ti(O-i-Pr)3] (4). These compounds have been obtained in high yields and have been adequately characterized through spectroscopic techniques and X-ray diffraction studies.  相似文献   

7.
A series of potentially bidentate benzimidazolyl ligands of the type (Bim)CH2D (where Bim = benzimidazolyl and D = NMe2L1, NEt2L2, NPri2L3, OMe L4 and SMe L5) has been reacted with Ti(NMe2)4 to give five- and six-coordinate Ti(IV) complexes of the type [(Bim)CH2D]Ti(NMe2)3 and [(Bim)CH2D]2Ti(NMe2)2, respectively. The X-ray structures of [(Bim)CH2OMe]Ti(NMe2)3, [(Bim)CH2NMe2]2Ti(NMe2)2 and [(Bim)CH2OMe)]2Ti(NMe2)2 are reported along with an evaluation of their behavior in ethylene polymerization.  相似文献   

8.
Liang LC  Hsu YL  Lin ST 《Inorganic chemistry》2011,50(8):3363-3372
The coordination chemistry of group 4 complexes supported by the tridentate, dianionic biphenolate phosphine ligand that carries a phosphorus-bound tert-butyl group, 2,2'-tert-butylphosphino-bis(4,6-di-tert-butylphenolate) ([(t)Bu-OPO](2-)), is described. Metathetical reactions of {[(t)Bu-OPO]Li(2)(DME)}(2) with 2 or 1 equiv of TiCl(4)(THF)(2) selectively produce [(t)Bu-OPO]TiCl(2)(THF) (1a) and Ti[(t)Bu-OPO](2) (2a), respectively. Protonolysis of Ti(O(i)Pr)(4) with 2 or 1 equiv of H(2)[(t)Bu-OPO] cleanly generates 2a and [(t)Bu-OPO]Ti(O(i)Pr)(2) (3a), respectively. Complex 1a can alternatively be prepared from comproportionation of 2a with 1 equiv of TiCl(4)(THF)(2). Treatment of 1a with 2 equiv of NaO(t)Bu affords [(t)Bu-OPO]Ti(O(t)Bu)(2) (4a). In contrast, reactions of {[(t)Bu-OPO]Li(2)(DME)}(2) with ZrCl(4)(THF)(2) or HfCl(4)(THF)(2), regardless of stoichiometry of the starting materials employed, selectively give bis-ligated M[(t)Bu-OPO](2) [M = Zr (2b), Hf (2c)]. Comproportionation of 2b,c with MCl(4)(THF)(2) (M = Zr, Hf) leads to the formation of [(t)Bu-OPO]MCl(2)(THF) [M = Zr (1b), Hf (1c)], which, upon being treated with 2 equiv of NaO(t)Bu, generates [(t)Bu-OPO]M(O(t)Bu)(2)(THF) (4b,c). These synthetic results are markedly different from those obtained from analogous reactions employing a biphenolate phosphine ligand bearing a phosphorus-bound phenyl group ([Ph-OPO](2-)), highlighting a profound phosphorus substituent effect on complex conformation. The alkoxide complexes 3a and 4a-c are all active initiators for catalytic ring-opening polymerization of ε-caprolactone. To assess the potential phosphorus substituent effect on catalysis, [Ph-OPO]Ti(O(i)Pr)(2) (5a) was prepared, and its reactivity was examined. Interestingly, polymers prepared from 3a are characterized by low polydispersities with molecular weights that are linearly dependent on the monomer-to-initiator ratio, thus featuring a living system. The polydispersitiy indexes of polymers prepared from 5a, however, are relatively larger, indicative of the significance of the phosphorus-bound tert-butyl group in 3a in view of discouraging the undesirable transesterification.  相似文献   

9.
Treatment of the single cube nitrido complexes [(thf)x((Me3Si)2N)M((mu3-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N))](M = Mg, x= 0; Ca, x= 1) with one equivalent of anilines NH2Ar in toluene affords the arylamido complexes [(ArHN)M((mu3-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N))]n[M = Mg (3), n= 1, Ar = 4-MeC6H4; Ca (4), n= 2, Ar = 2,4,6-Me3C6H2]. The magnesium complex 3 has a single-cube structure whereas the X-ray crystal structure of the analogous calcium derivative 4 shows two cube-type azaheterometallocubane moieties Ca((mu3-N)(mu3-NH)2Ti3(eta5-C5Me5)3(mu3-N)) held together by two mu-2,4,6-trimethylanilido ligands. Complexes 3 and 4 react with chloroform-d1 at room temperature to give the metal halide adducts [Cl2M((mu3-NH)3Ti3(eta5-C5Me5)3(mu3-N))](M = Mg, Ca). A solution of 3 in n-hexane gave complex [(Mg2(mu3-N)(mu3-NH)5[Ti3(eta5-C5Me5)3(mu3-N)]2)(mu-NHAr)3] which shows three mu-4-methylanilido ligands bridging two [MgTi3N4] cube type cores according to an X-ray crystal structure determination.  相似文献   

10.
The reactions of the complexes [(dcype)NiH]2, 1, [(dippe)NiH]2, 2, and [(dtbpe)NiH]2, 3, with a mixture of BEt3 and Super-Hydride (LiHBEt3) afforded sigma-borane nickel(0) compounds of the type [(dcype)Ni(sigma-HBEt2)], 4, [(dippe)Ni(sigma-HBEt2)], 5, [(dtbpe)Ni(sigma-HBEt2)], 6, respectively, with the concomitant formation in each case of [(dcype)2Ni2)(H)3][BEt4], 7, [(dippe)2Ni2(H)3][BEt4], 8 and [(dtbpe)2Ni2(H)3][BEt4], 9, respectively. X-ray crystal structures are reported for 4 and 8.The reaction of BEt3 and LiHBEt3 was also reviewed in detail.  相似文献   

11.
Heterobimetallic molecular precursors [Ti4(dmae)6(mu-OH)(mu-O)6Cu6(OAc)9.H2O] (1) and [Zn7(OAc)10(mu-OH)6Cu5(dmae)4Cl4] (2) for the deposition of metal oxide thin films of Cu6Ti4O12 (Cu3TiO4, TiO2) and Cu5Zn7O12 (ZnO, CuO) were prepared by the interaction of Ti(dmae)4 with Cu(OAc)2.2H2O for 1 and tetrameric (N,N-dimethylamino)ethanolatocopper(II) chloride, [(dmae)CuCl]4 [where dmae = (N,N-dimethylamino)ethanolate] with Zn(OAc)2.2H2O (where OAc = acetate) for 2 in dry toluene. Both complexes were characterized by melting point, elemental analysis, Fourier transform IR, fast atom bombardment mass spectrometry, thermal analysis (TGA), and single-crystal X-ray diffraction. TGA and XRD prove that complexes 1 and 2 undergo facile thermal decomposition at 300 and 460 degrees C to form thin films of Cu/Ti and Cu/Zn mixed-metal oxides, respectively. Scanning electron microscopy and XRD of the thin films suggest the formation of impurity-free crystallite mixtures of Cu3TiO4 and TiO2, with average crystallite sizes of 22.2 nm from complex 1 and of ZnO and CuO with average crystallite sizes of 26.1 nm from complex 2.  相似文献   

12.
Metal-halide complexes of Ti, V, Y, Zr, Al, Ga, and U supported by the tetradentate monoanionic (TDMA) ligand bis(2-picolyl)(2-hydroxy-3,5-di-tert-butylbenzyl)amine, H(BPPA), were synthesized and spectroscopically characterized. In addition, the complexes (BPPA)TiCl2, (BPPA)VBr2, [(BPPA)YCl2]2, (BPPA)AlCl2, (BPPA)GaCl2, and (BPPA)UI3 were characterized by single-crystal X-ray crystallography. In all cases the ligand is bound kappa4 to the metal center. All structurally characterized compounds are monomeric in the solid-state with the exception of [(BPPA)YCl2]2, which exists as a dimer in the solid-state. The metal-alkyl complexes (BPPA)AlMe2 and (BPPA)Zr(CH2Ph)3 were also synthesized and characterized, and an X-ray structure of (BPPA)Zr(CH2Ph)3 was obtained. The transformation of BPPA from a monoanionic to a dianionic ligand via proton abstraction was observed and monitored by NMR spectroscopy.  相似文献   

13.
Reactions of Ph2P(O)(OH) and t-BuP(O)(OSiMe3)(OH) with Ti(O-i-Pr)4 in equimolar ratios gave titanium phosphonates of the type [(O-i-Pr)3Ti(mu-O)2PR1R2]2 (1, R1 = R2 = Ph; 2, R1 = t-Bu, R2 = OSiMe3) as colorless crystalline solids in moderate yields. Reactions of Ph2P(O)(OH) and the isopropoxides of zirconium and hafnium resulted in products of the composition [(O-i-Pr)3M(mu-O-i-Pr)2(mu-OPOPh2)M(O-i-Pr)2]Ph2P(O)(OH) (M = Zr (3), Hf (4)) in high yields. The compounds were characterized by 1H, 31P, and 29Si NMR, infrared (IR), and mass spectroscopic (MS) techniques. The molecular structures of 2 and 3 were confirmed by X-ray crystallography.  相似文献   

14.
Pevec A 《Inorganic chemistry》2004,43(4):1250-1256
The complexes [Ba[(C5Me5)2Ti2F7]2(hmpa)].(THF), 1.hmpa.(THF), and [Ba8Ti6F30I2(C5Me5)6(hmpa)6][I3]2.10(THF), 2[I3]2.10(THF), were prepared from [Hdmpy](+)[(C5Me5)2Ti2F7]- (dmpy = 2,6-dimethylpyridine), BaI2, and hmpa (hmpa = hexamethylphosphoramide). They were characterized by 1H and 19F NMR and IR spectroscopy and examined by single-crystal X-ray crystallography. The complexation equilibrium of the barium ion in 1 with hmpa and the dynamics of the barium ion moving on the fluorine surfaces of [(C5Me5)2Ti2F7]- in 1.hmpa have been studied by variable-temperature 19F NMR spectroscopy. The core of the complex 2[I3]2.10(THF) resembles the basic structural unit of the cubic perovskite.  相似文献   

15.
A study regarding coordination chemistry of the bis(diphenylphosphino)amide ligand Ph(2) P-N-PPh(2) at Group?4 metallocenes is presented herein. Coordination of N,N-bis(diphenylphosphino)amine (1) to [(Cp(2) TiCl)(2) ] (Cp=η(5) -cyclopentadienyl) generated [Cp(2) Ti(Cl)P(Ph(2) )N(H)PPh(2) ] (2). The heterometallacyclic complex [Cp(2) Ti(κ(2) -P,P-Ph(2) P-N-PPh(2) )] (3?Ti) can be prepared by reaction of 2 with n-butyllithium as well as from the reaction of the known titanocene-alkyne complex [Cp(2) Ti(η(2) -Me(3) SiC(2) SiMe(3) )] with the amine 1. Reactions of the lithium amide [(thf)(3) Li{N(PPh(2) )(2) }] with [Cp(2) MCl(2) ] (M=Zr, Hf) yielded the corresponding zirconocene and hafnocene complexes [Cp(2) M(Cl){κ(2) -N,P-N(PPh(2) )(2) }] (4?Zr and 4?Hf). Reduction of 4?Zr with magnesium gave the highly strained heterometallacycle [Cp(2) Zr(κ(2) -P,P-Ph(2) P-N-PPh(2) )] (3?Zr). Complexes 2, 3?Ti, 4?Hf, and 3?Zr were characterized by X-ray crystallography. The structures and bondings of all complexes were investigated by DFT calculations.  相似文献   

16.
Reaction of diamine-bis(phenol) ligands containing a mixture of N-methyl and N,N′-dimethyl-N,N-bis(2-hydroxy-3,5-dimethylbenzyl)ethylenediamine, H2L1 and H2L3, with [Ti(OCHMe2)4 in absolute ethanol under reflux without exclusion of air and moisture gives [(L1)Ti (OEt–O–Ti(OEt)(L1)] (1). [(L3)Ti(OEt)–O–Ti(OEt)(L3)] (2) forms when the remaining solution containing [(L3)Ti(OEt)2] (3) (characterised by X-ray crystallography) is hydrolysed with H2O. For the N-methyl and N,N′-dimethyl ligand mixture H2L2 and H2L4, which contain tert-butyl groups on the ortho-positions of the aryl rings, [(L2)Ti(OEt)–O–Ti(OEt)(L2)] (4) forms much more slowly and [(L4)Ti(OEt)2] (5) does not hydrolyse when H2O is added. When the N-protonated ligand N,N-bis(2-hydroxy-3-methyl-5-tert-butylbenzyl)ethylenediamine, H2L5, is used, rapid hydrolysis to two isomers of [(L5)Ti(OEt–O–Ti(OEt)(L5)] (6) occurs without addition of water. For N,N-bis(2-hydroxy-3,5-di-tert-butylbenzyl)ethylenediamine, H2L6, hydrolysis to [(L6)Ti(OEt)–O–Ti(OEt)(L6)] (7) occurs slowly when H2O is added. For pendant NMe2 ligand N,N-dimethyl-N′,N′-bis(2-hydroxy-3-methyl-5-tert-butylbenzyl)ethylenediamine, H2L7, the hydrolysis reaction readily gives [(L7)Ti(OEt)–O–Ti(OEt)(L7)] (8) for which an X-ray crystal structure was obtained. The ortho-tert-butyl ligand derivative H2L8 formed a complex analysing as [(L8)Ti(OEt)–O–Ti(OEt)(L8)] (9) which could not be studied further due to insolubility. Pendant pyridine ligand N-(2-pyridylmethyl)-N,N-bis(2′-hydroxy-3′-methyl-5′-tert-butylbenzyl)amine, H2L9, apparently forms isomers of [(L9)Ti(OEt)–O–Ti(OEt)(L9)] and possibly [{(L9)Ti(O)}2] from [(L9)Ti(OEt)2] (10). The ortho-tert-butyl ligand derivative H2L10 formed [(L10)Ti(OEt)–O–Ti(OEt)(L10)] (11) for which an X-ray crystal structure was obtained.  相似文献   

17.
The aqueous cluster salt [(H2O)9W3S4][pts]4.9H2O (pts = p-toluenesulfonate) was converted to the methylcyclopentadienyl (Cp') substituted cluster [(eta5-Cp')3W3S4][pts] ([1][pts]) from which the cubane-like cluster [(eta5-Cp')3W3S4Ni(PPh3)][pts] ([2][pts]) was obtained by reaction with Ni(cod)2 and PPh3. [2][pts] was characterized by X-ray crystal structure analysis.  相似文献   

18.
Treatment of the titanium(IV) alkoxide complex [Ti(Oi Pr)(OC6Me2H(2)CH2)3N] (2) with BH3.THF, as part of a study into the utility and reactivity of (2) in the metal mediated borane reduction of acetophenone, results in alkoxide-hydride exchange and formation of the structurally characterised titanium(iv) tetrahydroborate complex [Ti{BH4}(OC6Me2H2CH2)3N] (3). Complex (3) readily undergoes reduction to form the isolable titanium(III) species [Ti(OC6Me2H2CH2)3N]2 (4). Reaction of (2) with B(C6F5)3 results in formation of the Lewis acid adduct [Ti(OC6Me2H2CH2)3N][HO.B(C6F5)3] (5). In comparison, treatment of the less sterically encumbered alkoxide Ti(Oi Pr)4 with B(C6F5)3 results in alkoxide-aryl exchange and formation of the organometallic titanium complex [Ti(Oi Pr)3(C6F5)]2 (6). The molecular structures of 3, 4, 5 and 6 have been determined by X-ray diffraction.  相似文献   

19.
Treatment of titanyl sulfate in about 60 mM sulfuric acid with NaL(OEt) (L(OEt) (-)=[(eta(5)-C(5)H(5))Co{P(O)(OEt)(2)}(3)](-)) afforded the mu-sulfato complex [(L(OEt)Ti)(2)(mu-O)(2)(mu-SO(4))] (2). In more concentrated sulfuric acid (>1 M), the same reaction yielded the di-mu-sulfato complex [(L(OEt)Ti)(2)(mu-O)(mu-SO(4))(2)] (3). Reaction of 2 with HOTf (OTf=triflate, CF(3)SO(3)) gave the tris(triflato) complex [L(OEt)Ti(OTf)(3)] (4), whereas treatment of 2 with Ag(OTf) in CH(2)Cl(2) afforded the sulfato-capped trinuclear complex [{(L(OEt))(3)Ti(3)(mu-O)(3)}(mu(3)-SO(4)){Ag(OTf)}][OTf] (5), in which the Ag(OTf) moiety binds to a mu-oxo group in the Ti(3)(mu-O)(3) core. Reaction of 2 in H(2)O with Ba(NO(3))(2) afforded the tetranuclear complex (L(OEt))(4)Ti(4)(mu-O)(6) (6). Treatment of 2 with [{Rh(cod)Cl}(2)] (cod=1,5-cyclooctadiene), [Re(CO)(5)Cl], and [Ru(tBu(2)bpy)(PPh(3))(2)Cl(2)] (tBu(2)bpy=4,4'-di-tert-butyl-2,2'-dipyridyl) in the presence of Ag(OTf) afforded the heterometallic complexes [(L(OEt))(2)Ti(2)(O)(2)(SO(4)){Rh(cod)}(2)][OTf](2) (7), [(L(OEt))(2)Ti(O)(2)(SO(4)){Re(CO)(3)}][OTf] (8), and [{(L(OEt))(2)Ti(2)(mu-O)}(mu(3)-SO(4))(mu-O)(2){Ru(PPh(3))(tBu(2)bpy)}][OTf](2) (9), respectively. Complex 9 is paramagnetic with a measured magnetic moment of about 2.4 mu(B). Treatment of zirconyl nitrate with NaL(OEt) in 3.5 M sulfuric acid afforded [(L(OEt))(2)Zr(NO(3))][L(OEt)Zr(SO(4))(NO(3))] (10). Reaction of ZrCl(4) in 1.8 M sulfuric acid with NaL(OEt) in the presence Na(2)SO(4) gave the mu-sulfato-bridged complex [L(OEt)Zr(SO(4))(H(2)O)](2)(mu-SO(4)) (11). Treatment of 11 with triflic acid afforded [(L(OEt))(2)Zr][OTf](2) (12), whereas reaction of 11 with Ag(OTf) afforded a mixture of 12 and trinuclear [{L(OEt)Zr(SO(4))(H(2)O)}(3)(mu(3)-SO(4))][OTf] (13). The Zr(IV) triflato complex [L(OEt)Zr(OTf)(3)] (14) was prepared by reaction of L(OEt)ZrF(3) with Me(3)SiOTf. Complexes 4 and 14 can catalyze the Diels-Alder reaction of 1,3-cyclohexadiene with acrolein in good selectivity. Complexes 2-5, 9-11, and 13 have been characterized by X-ray crystallography.  相似文献   

20.
The protonolysis reaction of heterobimetallic peralkylated complexes [Ln(AlR4)2]n (Ln=Sm, Yb; R=Me, Et) with 2 equiv of HOC 6H 2 tBu 2-2,6-Me-4 affords the bis(trialkylaluminum) adducts Ln[(micro-OArtBu,Me)(micro-R)AlR2]2 in good yields. Analogous reactions with the less sterically demanding iPr-substituted phenol result in ligand redistributions and formation of X-ray structurally evidenced Ln[(micro-OAriPr,H) 2AlR2]2 (Ln=Yb, R=Me; Ln=Sm, R=Et), Yb[(micro-OAriPr,H)(micro-Et)AlEt2]2(THF), and [Et2Al(micro-OAriPr,H) 2Yb(micro-Et)2AlEt2]2. The solid-state structures of serendipitous alumoxane complex Sm[(micro-OArtBu,Me)AlEt2OAlEt2(micro-OArtBu,Me)](toluene) and dimeric AlMe 3-adduct complex [(AlMe3)(micro-OArtBu,Me)Sm(micro-OArtBu,Me) 2Sm(micro-OArtBu,Me)(AlMe3)] were also determined by X-ray crystallography. While the former can be discussed as a typical hydrolysis product of Sm[(micro-OArtBu,Me)(micro-Et)AlEt2]2, the latter was isolated from the 1:1 reaction of [Sm(AlEt4)2]n with HOArtBu,Me.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号