首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The results of time resolved gas phase studies of labile germylenes (GeH2 and GeMe2) and dimethylstannylene (SnMe2) reactions reported to date are considered together with data of quantum-chemical investigations of the potential energy surfaces of these systems. Reaction mechanisms are discussed. A comparison of reactivity in the series of carbene analogs, ER2 (E = Si, Ge, Sn, R = H, Me), is made.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 477–505, March, 2005.  相似文献   

2.
The formation and decomposition pathways of germiranes (germacyclopropanes), i.e., products of reactions of the GeH2 and GeMe2 germylenes with ethylene, tetramethylethylene, buta-1,2,3-triene, and tetramethylbuta-1,2,3-triene, were studied using the density functional approach (PBE/TZ2P approximation). The thermodynamic stabilities of the structures under consideration were evaluated by calculating the Gibbs free energies under normal conditions (ΔG°298). Addition of germylenes to the C=C bond can proceed as a single-step process without a barrier or involve the formation of a π-complex (the barrier to this process is lower than the sum of the energies of isolated reactants). Stability of the germiranes formed is determined by their stability to retrodecomposition into the initial germylene and olefin and to the three-membered ring opening followed by simultaneous 1,2-migration of the substituent at the Ge atom and formation of the secondary germylene. Alkyl substituents can efficiently block the opening of the three-membered ring and transformation of the cyclic structure into the secondary germylene, simultaneously decreasing the germirane stability to retrodecomposition. Decomposition into germylene and olefin under normal conditions is thermally favorable for hexamethylgermirane (ΔG°298 = −5.7 kcal mol−1), being thermally forbidden for the other germiranes studied in this work (Δ G°298 > 0). The activation energy (E a) for the germirane ring opening depends on the substituents at the germanium atom, namely, E a ≤ 10 kcal mol−1 for unsubstituted germiranes and E a > 30 kcal mol−1 for methyl-substituted germiranes. Taking the experimentally isolated germirane as an example, it was shown how the introduction of substituents and modification of the carbon skeleton make it possible to stabilize the germacyclopropane system. Dedicated to Academician A. L. Buchachenko on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1943–1951, September, 2005.  相似文献   

3.
The effect of the nature of substituents at sp2-hybridized silicon atom in the R2Si=CH2 (R = SiH3, H, Me, OH, Cl, F) molecules on the structure and energy characteristics of complexes of these molecules with ammonia, trimethylamine, and tetrahydrofuran was studied by the ab initio (MP4/6-311G(d)//MP2/6-31G(d)+ZPE) method. As the electronegativity, χ, of the substituent R increases, the coordination bond energies, D(Si← N(O)), increase from 4.7 to 25.9 kcal mol−1 for the complexes of R2Si=CH2 with NH3, from 10.6 to 37.1 kcal mol−1 for the complexes with Me3N, and from 5.0 to 22.2 kcal mol−1 for the complexes with THF. The n-donor ability changes as follows: THF ≤ NH3 < Me3N. The calculated barrier to hindered internal rotation about the silicon—carbon double bond was used as a measure of the Si=C π-bond energy. As χ increases, the rotational barriers decrease from 18.9 to 5.2 kcal mol−1 for the complexes with NH3 and from 16.9 to 5.7 kcal mol−1 for the complexes with Me3N. The lowering of rotational barriers occurs in parallel to the decrease in D π(Si=C) we have established earlier for free silenes. On the average, the D π(Si=C) energy decreases by ∼25 kcal mol−1 for NH3· R2Si=CH2 and Me3N·R2Si=CH2. The D(Si←N) values for the R2Si=CH2· 2Me3N complexes are 11.4 (R = H) and 24.3 kcal mol−1 (R = F). sp2-Hybridized silicon atom can form transannular coordination bonds in 1,1-bis[N-(dimethylamino)acetimidato]silene (6). The open form (I) of molecule 6 is 35.1 and 43.5 kcal mol−1 less stable than the cyclic (II, one transannular Si←N bond) and bicyclic (III, two transannular Si←N bonds) forms of this molecule, respectively. The D(Si←N) energy for structure III was estimated at 21.8 kcal mol−1. Dedicated to Academician N. S. Zefirov on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1952–1961, September, 2005.  相似文献   

4.
According to ab initio molecular orbital calculations carried out with full geometry optimization at the MP2/6–31G** level, the classical 2-fluoroethyl cation, FCH2CH2+, is a transition structure for H-scrambling in CH3CHF+. Single point MP4/6–31G** calculations at the optimized geometries predict the cyclic ethylene fluoronium ion to lie 24.2 kcal mol−1 above CH3CHF+ and 5.4 kcal mol−1 below the 2-fluoroethyl cation. ΔG‡ for ring opening of the cyclic fluoronium ion at -60° is estimated to be ca 15 kcal mol−1. This barrier is largely attributable to the powerful negative fluorine hyperconjugation in the transition state as described by Hoffmann and coworkers. When electron correlation effects are ignored a qualitatively different potential surface is obtained on which the 2-fluoroethyl cation is calculated to be a local minimum separated from the stable 1-fluoroethyl cation by an H-bridged transition state.  相似文献   

5.
The far-infrared spectra of gaseous and solid ethyl nitrate, CH3CH2ONO2, have been recorded from 500 to 50 cm−1. The fundamental asymmetric torsion of the trans conformer which has a heavy atom plane has been observed at 112.50 cm−1 with two excited states failing to lower frequencies, and the corresponding fundamental torsion of the gauche conformer was observed at 109.62 cm−1 with two excited states also falling to lower frequencies. The results of a variable temperature Raman study indicate that the trans conformer is more stable than the gauche conformer by 328 ± 96 cm−1 (938 ± 275 cal mol−1). An asymmetric potential function governing the internal rotation about the CH2O bond is reported which gives a trans to gauche barrier of 894 ± 15 cm−1 (2.56 ± 0.04 kcal mol−1) and a gauche to gauche barrier of 3063 ± 68 cm−1 (8.76 ± 0.20 kcal mol−1) with the trans conformer more stable by 220 ± 148 cm−1 (0.63 ± 0.42 kcal mol−1). Transitions arising from the symmetric CH3 and NO2 torsions are observed for both conformers, from which the threefold and twofold periodic barriers to internal rotation have been calculated. For the trans conformer the values are 1002 cm−1 (2.87 kcal mol−1) and 2355 ± 145 cm−1 (6.73 ± 0.42 kcal mol−1) and for the gauche conformer they are 981 cm−1 (2.81 kcal mol−1) and 2736 ± 632 cm−1 (7.82 ± 1.81 kcal mol−1) for the CH3 and NO2 rotors, respectively. These results are compared to the corresponding quantities for some similar molecules.  相似文献   

6.
Syntheses and caracterization of bifunctional germylenes Several synthetic methods of bifunctional germylenes GeY2 (Y = RO, PhO, RS, CH3COO, Acac; Y2 = OCH2CH2O, SCH2CH2S) or GeXY (Y = RO, X = Cl; Y = RS, X = Cl; Y = Acac, X = Cl) such as exchange reactions, dechlorhydratation reactions and nucleophilic substitutions from GeCl2 · dioxane are described. Some more synthesis of divalent species GeY2 from Ge(OR)2 by transalcoxylation and from Ge(Cp)2 by cleavage using protic species will be presented. The stability and reactivity of these germylenes are discussed. Difunctionnal germylenes give generally a selfpolycondensation reactions. However, their reactivity in situ shows a effective participation of monomeric species GeY2.  相似文献   

7.
From measurements of the heats of iodination of CH3Mn(CO)5 and CH3Re(CO)5 at elevated temperatures using the ‘drop’ microcalorimeter method, values were determined for the standard enthalpies of formation at 25° of the crystalline compounds: ΔHof[CH3Mn(CO)5, c] = ?189.0 ± 2 kcal mol?1 (?790.8 ± 8 kJ mol?1), ΔHof[Ch3Re(CO)5,c] = ?198.0 ± kcal mol?1 (?828.4 ± 8 kJ mo?1). In conjunction with available enthalpies of sublimation, and with literature values for the dissociation energies of MnMn and ReRe bonds in Mn2(CO)10 and Re2(CO)10, values are derived for the dissociation energies: D(CH3Mn(CO)5) = 27.9 ± 2.3 or 30.9 ± 2.3 kcal mol?1 and D(CH3Re(CO)5) = 53.2 ± 2.5 kcal mol?1. In general, irrespective of the value accepted for D(MM) in M2(CO)10, the present results require that, D(CH3Mn) = 12D(MnMn) + 18.5 kcal mol?1 and D(CH3Re) = 12D(ReRe) + 30.8 kcal mol?1.  相似文献   

8.
Complex between a carbene analog (SnF2) and organo halide (CH3Cl) was stabilized by a low-temperature (Ar, 12 K) matrix isolation technique and characterized by IR spectroscopy for the first time. The bands at 567 and 543 cm–1 were assigned to this complex. The potential energy surface of the system SnF2 + CH3CI was studied byab initio MP2/ 3-21G(d)//HF/3-21G(d) and semiempirical PM3 methods. Calculations shown that the reaction between SnF2 and CH3C1 results in the formation of a donor-acceptor complex. The calculated energy of the complex formation is 14.2 kcal mol–1 (ab initio) and 15.7 kcal mol–1 (PM3). Quantum-chemical calculations were used to interpret the IR spectrum of the complex. Insertion of SnF2 into the C-Cl bond with formation of CH3SnF2Cl is an energetically favored process but it requires surpassing of a high energetic barrier and does not occur under the experimental conditions. A complex of CH3CI with H2O codeposited in argon matrix was detected by IR spectroscopy for the first time.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 1121–1128, May, 1996.  相似文献   

9.
Ab initio molecular orbital calculations using a 3-21G basis set have been used to optimize geometries for pyrrole, CH3(X)CCH2, CH3(H)CCHX (both cis and trans), c-C3H5X, and CH2CHCH2X, where X is CN and NC. In all the alkenyl derivatives methyl groups are found to adopt the conformation in which the methyl hydrogen eclipses the double bond. 6-31G*∥3-21G level calculations show the alkenyl cyanides to be of similar energy to pyrrole, but the isocyanides are ~20 kcal mol?1 higher in energy. For both substituents the cyclopropyl derivatives are higher in energy by ~10 kcal mol?1. At the 6-31G* level ring strain is 27.7 kcal mol?1 for the cyanide and 30.6 kcal mol?1 for the isocyanide. Data on the relative energies of RCN and RNC are compared when R is (i) a saturated hydrocarbon, (ii) an unsaturated hydrocarbon, (iii) an α-carbenium ion, (iv) an allyl cation, and (v) an α-carbanion.  相似文献   

10.
A series of trichlorogermyl-substituted dicarboxylic acids of general formula HOOC–R′–COOH where R′=–CH2CH(GeCl3)CH21, –CH(CH2GeCl3)CH22, –CH(GeCl3)CH23 and –CH(CH3)CH(GeCl3)– 4 were synthesized by the hydrogermylation reaction of unsaturated acids, such as trans-glutaconic (2-pentenedioic acid), itaconic (methylenebutanedioic acid), fumaric (2-butenedioic acid), and citraconic (2-methyl-2-butenedioic acid) acids with HGeCl3, which was produced in situ by the reaction of GeO2 with 37% HCl in presence of NaH2PO2 · H2O. All these compounds were characterized by melting point, CHN analysis, FTIR, and multinuclear NMR (1H; 13C; H,H-COSY). X-Ray crystal structures of 1 and 2 were analyzed to show supramolecular structures in which central Ge atom in each of these structures is four-coordinated with a slightly distorted tetrahedral geometry. Structurally, both compounds adopt supramolecular forms via strong intermolecular O–H–O interactions through 8-membered and 22-membered hydrogen bonded rings. Supplementary material to this paper is available in electronic form at Correspondence: Muhammad Mazhar, Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan.  相似文献   

11.
A conformational study on the lowest triplet states of formaldehyde, acetaldehyde, propionaldehyde and acetone has been done using a minimal basis set, within the unrestricted Hartree—Fock framework.For the C3H6O species, the energy hypersurfaces (E θ1, θ2, θ3) were generated, where energy is a function of the methyl rotations (θ1, θ2) and C---O out-of-plane bending for acetone, and a function of methyl rotation (θ1), C2H5---C rotation (θ2) and CHO out-of-plane deformation (θ3) for propionaldehyde.The analysis of the hypersurface equations revealed the location and relative energies of the critical points (minima, first and second order saddle points as well as maxima): the barriers to inversion at the carbonyl group were 2.7 kcal mol−1 for acetone and 4.2 kcal mol−1 for propionaldehyde. Partial geometry optimization reduced these barriers to 2.5 and 2.4 kcal mol−1 respectively.For comparison, both the pyramidal minimum and planar saddle point for the inversion of triplet formaldehyde and acetaldehyde were totally optimized; the resultant barriers were 2.0 kcal mol−1 and 2.3 kcal mol−1, respectively. The barrier to rotation about the bond to the α-carbon was 1.1 kcal mol−1 for pyramidal acetone, 1.0 for acetaldehyde and ranged from 0.8 to 1.8 kcal mol−1 for the various propionaldehyde conformers.  相似文献   

12.
The infrared spectra of gaseous and solid tertiary-butylphosphine, [(CH3)3CPH2], have been recorded from 50 cm?1 to 3500 cm?1. The Raman spectra of gaseous, liquid and solid (CH3)3CPH2 have been recorded from 10 to 3500 cm?1. A vibrational assignment of the 42 normal modes has been made. A harmonic approximation of the methyl torsional barrier from observed transitions in the solid state gave a result of 4.22 kcal mol?1 and 3.81 kcal mol?1 in the gaseous state. Hot band transitions for the phosphino torsional mode have been observed. The potential function for internal rotation about the C-P bond has been calculated. The two potential constants were determined to be: V3 = 2.79 ± 0.01 kcal mol?1 and V6 = 0.07 ± 0.01 kcal mol?1.  相似文献   

13.
An accurate gas-phase acidity for germane (enthalpy scale, equivalent to the proton affinity of GeH3 ?), ΔH acid o(GeH4) = 1502.0 ± 5.1 kJ mol?1, is obtained by constructing a consistent acidity ladder between GeH4, and H2S by using Fourier transform-ion cyclotron resonance spectrometry, and 0 and 298.15 K values for the first bond dissociation energy of GeH4 are proposed: D0 o(H3Ge-H) = 352 ± 9 kJ mol?1; D o(H3Ge-H) = 358 ± 9 kJ mol?1, respectively. These results are compared with experimental and theoretical data reported in the literature. Methylgermane was found to be a weaker acid than germane by approximately 35 kJ mol?1: ΔH acid o = 1536.6 kJ mol?1.  相似文献   

14.
The equilibrium structures, vibrational spectra, and heats of formation for CH3OCl and CH3ClO have been estimated using high levels of ab initio molecular orbital theory. The lowest energy isomer is found to be CH3OCl, and its heat of formation is estimated to be −13.5±2 kcal mol−1, in good agreement with bond additivity estimates. Results for the CH3ClO isomer are presented for the first time, and it is found to be 40.5 kcal mol−1 higher in energy relative to CH3OCl. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 73: 29–35, 1999  相似文献   

15.
The electronic structures and dissociation energies of diazocyclopropane (1), diazomethane (2), 2-diazopropane (3), and diazocyclobutane (4) were calculated at the density functional B3LYP and the ab initio MP2 levels using the 6-31G(d) basis set and at the G2(MP2,SVP)//B3LYP/6-31G(d) level. Distinctive features of diazocyclopropane 1 are the low energy of dissociation with loss of the nitrogen molecule; ΔE = 18.7 kcal mol−1, B3LYP; 9.2 kcal mol−1, G2 at 0 K) and a nonplanar structure, in which the C=N bond forms an angle of 115.7° with the plane of the cyclopropane ring. The behavior of molecules 1 and 2 in the 1,3-dipolar cycloaddition to ethylene (5), acrylonitrile (6), and methyl acrylate (7) was studied. The reactions of 1 with 6 and 7 have very low activation barriers (ΔE a = 4.7 and 4.4 kcal mol−1, respectively; at the B3LYP level). For these reactions, the G2 method gives even smaller activation parameters (1.8 and 0.3 kcal mol−1, respectively). The results of our calculations provide a good explanation for high reactivity of diazocyclopropane 1. Dedicated to Academician N. K. Kochetkov on the occasion of his 90th birthday. __________ Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 1072–1076, May, 2005.  相似文献   

16.
Reactions of methane and hydrogen molecules with [(η5-C5H5)2ZrCH3]+ and (η5-C5H5)2ZrH3]+ cations were studied using nonempirical density functional theory (DFT). In all cases, the reactions begin with the formation of agostic complexes between the substrate molecules and1 or2. Transformation of these intermediates into transition states when moving along the reaction coordinate requires only slight changes in the geometry. The dihydrogen molecule reacts with1 exothermically (−8.8 kcal mol−1) and barrierlessly to form2 and CH4. Exchange of σ-bonded ligands in the1−CH4 system proceeds through a symmetric transition state with an activation energy of 15.0 kcal mol−1. According to calculations, organometallic ZrIV complexes are promising for activation of C−H and H−H bonds under mild conditions. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2248–2254, December, 1999.  相似文献   

17.
Phosphole‐substituted phosphaalkenes (PPAs) of the general formula Mes*P?C(CH3)?(C4H2P(Ph))?R 5 a – c (Mes*=2,4,6‐tBu3Ph; R=2‐pyridyl ( a ), 2‐thienyl ( b ), phenyl ( c )) have been prepared from octa‐1,7‐diyne‐substituted phosphaalkenes by utilizing the Fagan–Nugent route. The presence of two differently hybridized phosphorus centers (σ23 and σ33) in 5 offers the possibility to selectively tune the HOMO–LUMO gap of the compounds by utilizing the different reactivity of the two phosphorus heteroatoms. Oxidation of 5 a – c by sulfur proceeds exclusively at the σ33‐phosphorus atom, thus giving rise to the corresponding thioxophospholes 6 a – c . Similarly, 5 a is selectively coordinated by AuCl at the σ33‐phosphorus atom. Subsequent second AuCl coordination at the σ23‐phosphorus heteroatom results in a dimetallic species that is characterized by a gold–gold interaction that provokes a change in π conjugation. Spectroscopic, electrochemical, and theoretical investigations show that the phosphaalkene and the phosphole both have a sizable impact on the electronic properties of the compounds. The presence of the phosphaalkene unit induces a decrease of the HOMO–LUMO gap relative to reference phosphole‐containing π systems that lack a P?C substituent.  相似文献   

18.
Quantum-chemical calculations of the geometry and energies of nine possible isomers of 12-vertex cobaltacarborane CpCoC2B9H11 (1) were carried out by the DFT method (PBEPBE/DGDZVP/DGA1). Thermodynamic stability of the isomers increases with increasing distance between the carbon atoms in the cage and is virtually independent of the position of the CpCo vertex. The relative stabilities of the 1,2,3-(17.57 kcal mol−1), 1,2,4-(3.72 kcal mol−1), and 1,2,9-isomers of 1 (0 kcal mol−1) are similar to the corresponding values for the ortho (17.61 kcal mol−1), meta (3.21 kcal mol−1), and para isomers (0 kcal mol−1) of carborane C2B10H12. The results of the present study confirm a close similarity of the CpCo and BH fragments in metallacarborane chemistry. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1557–1559, July, 2005.  相似文献   

19.
Infrared and Raman spectra (3600–3620cm?1) of methyl propionate CH3CH2-COOCH3, CH3CH2COOCD3 and methyl isobutyrate (CH3)2CHCOOCH3, (CH3)2CHCOOCD3, in liquid and crystalline states, have been recorded. Rotational isomerism, by rotation around the C-C bond α to the carbonyl group, is detected and the energy difference between the conformers is 1.1 ±0.3 kcal mol?1 for methyl propionate and 0.5 ±0.1 kcal mol?1 for methyl isobutyrate. Vibrational assignments in terms of group frequencies are proposed for each conformer, only the more stable being present in the crystal.  相似文献   

20.
Although integral to remote marine atmospheric sulfur chemistry, the reaction between methylsulfinyl radical (CH3SO) and ozone poses challenges to theoretical treatments. The lone theoretical study on this reaction reported an unphysically large barrier of 66 kcal mol−1 for abstraction of an oxygen atom from O3 by CH3SO. Herein, we demonstrate that this result stems from improper use of MP2 with a single-reference, unrestricted Hartree-Fock (UHF) wavefunction. We characterized the potential energy surface using density functional theory (DFT), as well as multireference methodologies employing a complete active-space self-consistent field (CASSCF) reference. Our DFT PES shows, in contrast to previous work, that the reaction proceeds by forming an addition adduct [CH3S(O3)O] in a deep potential well of 37 kcal mol−1. An O−O bond of this adduct dissociates via a flat, low barrier of 1 kcal mol−1 to give CH3SO2+O2. The multireference computations show that the initial addition of CH3SO+O3 is barrierless. These results provide a more physically intuitive and accurate picture of this reaction than the previous theoretical study. In addition, our results imply that the CH3SO2 formed in this reaction can readily decompose to give SO2 as a major product, in alignment with the literature on CH3SO reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号