首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bahamonde JL  Bendito DP  Pino F 《Talanta》1973,20(7):694-696
Bipyridylglyoxal dithiosemicarbazone reacts with iron(II) or (III). The Fe(III) complex is yellow (lambda(max) 400 nm). Fe(II) forms a red-violet 1:2 complex at pH 2.5 (lambda(max) 550 nm) and a green-blue 1:1 complex at pH 5-10 (lambda(max) 590-610 nm). Both ferrous complexes can be oxidized to the ferric complex; this reaction is reversible. The quantitative application of the ferrous complex has been studied.  相似文献   

2.
Gupta A  Khopkar SM 《Talanta》1995,42(10):1493-1496
A new method is proposed for the solvent extraction separation of cobalt(II) with hexaacetatocalix(6)arene in toluene. Cobalt(II) was extracted at pH 7.4 with 10 x 10(-4) M hexaacetocalix(6)arene, stripped with 2 M nitric acid, and determined spectrophotometrically at 500 nm as its complex with nitroso-R-salt. Cobalt was separated from any associated elements. The method was extended to the analysis of cobalt(II) in real samples such as vitamin B-12.  相似文献   

3.
Amin AS 《Annali di chimica》2002,92(7-8):729-739
The complex of tin (IV) with 5-(4'-nitro-2',6'-dichlorophenylazo) (I) and 5-(4'-chlorophenylazo)-6-hydroxypyrimidine-2,4-dione (II) in the presence of nonyl phenoxy polyethoxyethanol (NPE) and cetyltrimethylammonium bromide (CTAB) has a sensitive absorption band with lambda max 517 and 488 nm, respectively. Under the optimal conditions, Beer-Lambert law is obeyed over the range 0.05-1.50 and 0.05-1.30 micrograms ml-1 Sn(IV) with molar absorptivity being 9.50 x 10(4) and 1.05 x 10(5) L mol-1 using ligand I and II, respectively. As compared with the visible methods which uses bromopyrogallol red (BPR) as the chromogenic reagent (lambda max = 550 nm) and that using phenylfluorone (lambda max = 360 nm), our method is highly sensitive and selective because the complexes have a high and sharp absorption band. In addition, the present method is simple and rapid, no heating or standing time is needed. By means of the mixed surfactants, the precipitation caused by the ion association of cetyltrimethyl-ammonium cation and I3- anion is avoided if iodide is used for separating micro amounts of tin(IV) from a sample matrix. An application of the proposed method to the determination of tin(IV) in a variety of alloys and in a canned food was made with satisfactory results.  相似文献   

4.
Shibata S  Furukawa M  Goto K 《Talanta》1973,20(4):426-430
Cobalt(II) and 3-[(5-chloro-2-pyridyl)azo]-2,6-diaminopyridine (5-Cl-PADAPy) in slightly acid, neutral or alkaline media form a blue complex which is very stable even in the presence of mineral acids. The complex has two absorption maxima, at 575 and 620 nm. in 1.2M hydrochlororic acid. The system conforms to Beer's law; the optimal range for a 1-cm cell is 0.2-1.2 ppm cobalt. Milligram amounts of common anions and cations do not interfere. The molar absorptivity is 3.69 x 10(4) 1.mole(-1).cm(-1) at 620 nm.  相似文献   

5.
Shishkov AN  Malakova HG 《Talanta》1978,25(9):533-535
The disulphides of dithiophosphinic acids (DS) with the general formula R(2)P(S)SSP(S)R(2), where R = C(2)H(5), C(3)H(7), C(5)H(11), C(6)H(5) (I-IV) form coloured complexes of 1:3 stoichiometry with Pd(II). The absorption maxima and molar absorptivities are: a lambda(I) = 302 nm, epsilon(I) = 2.04 x 10(4) 1.mole(-1).cm(-1); lambda(II) = 305 nm, epsilon(II) = 2.58 x 10(4); lambda(III) = 303 nm, epsilon(III) = 2.60 x 10(4); lambda(IV) = 315 nm, epsilon(IV) = 3.25 x 10(4). The reaction takes about 3 min at room temperature, and the colour is stable for 24 hr. The influence of time, pH, reagent concentration, organic solvents and interferences have been studied. An extractive photometric method of determination of Pd(II) is described and applied to the determination of Pd(II) in a mixture of platinum metals.  相似文献   

6.
Eum MS  Chin CS  Kim SY  Kim C  Kang SK  Hur NH  Seo JH  Kim GY  Kim YK 《Inorganic chemistry》2008,47(14):6289-6295
Newly prepared hydrido iridium(III) complexes [Ir(ppy)(PPh3)2(H)L](0,+) (ppy = bidentate 2-phenylpyridinato anionic ligand; L = MeCN (1b), CO (1c), CN(-) (1d); H being trans to the nitrogen of ppy ligand) emit blue light at the emission lambda(max) (452-457, 483-487 nm) significantly shorter than those (468, 495 nm) of the chloro complex Ir(ppy)(PPh3)2(H)(Cl) (1a). Replacing ppy of 1a-d with F2ppy (2,4-difluoro-2-phenylpyridinato anion) and F2Meppy (2,4-difluoro-2-phenyl-m-methylpyridinato anion) brings further blue-shifts down to the emission lambda(max) at 439-441 and 465-467 nm with CIE color coordinates being x = 0.16 and y = 0.18-0.20 to display a deep-blue photoemission. No significant blue shift is observed by replacing PPh3 of 1a with PPh2Me to produce Ir(ppy)(PPh2Me)2(H)(Cl) (1aPPh 2Me), which displays emission lambda max at 467 and 494 nm. The chloro complexes, [Ir(ppy)(PPh3)2(Cl)(L)](0,+) (L = MeCN (2b), CO (2c), CN(-) (2d)) having a chlorine ligand trans to the nitrogen of ppy also emit deep-blue light at emission lambda(max) 452-457 and 482-487 nm.  相似文献   

7.
The reaction of Ru(trpy)Cl(3) (trpy = 2,2':6',2"-terpyridine) with the pyridine-based imine function N(p)C(5)H(4)-CH=N(i)-NH-C(6)H(5) (L), incorporating an NH spacer between the imine nitrogen (N(i)) and the pendant phenyl ring, in ethanol medium followed by chromatographic work up on a neutral alumina column using CH(3)CN/CH(2)Cl(2) (1:4) as eluent, results in complexes of the types [Ru(trpy)(L')](ClO(4))(2) (1) and [Ru(trpy)(L)Cl]ClO(4) (2). Although the identity of the free ligand (L) has been retained in complex 2, the preformed imine-based potentially bidentate ligand (L) has been selectively transformed into a new class of unusual imine-amidine-based tridentate ligand, N(p)C(5)H(4)-CH=N(i)-N(C(6)H(5))C(CH(3))=N(a)H (L'), in 1. The single-crystal X-ray structures of the free ligand (L) and both complexes 1 and 2 have been determined. In 2, the sixth coordination site, that is, the Cl(-) function, is cis to the pyridine nitrogen (N(p)) of L which in turn places the NH spacer away from the Ru-Cl bond, whereas, in 1, the corresponding sixth position, that is, the Ru-N(a) (amidine) bond, is trans to the pyridine nitrogen (N(p)) of L'. The trans configuration of N(a) with respect to the N(p) of L' in 1 provides the basis for the selective L --> L' transformation in 1. The complexes exhibit strong Ru(II) --> pi* (trpy) MLCT transitions in the visible region and intraligand transitions in the UV region. The lowest energy MLCT band at 510 nm for 2 has been substantially blue-shifted to 478 nm in the case of 1. The reversible Ru(III)-Ru(II) couples for 1 and 2 have been observed at 0.80 and 0.59 V versus SCE, respectively. The complexes are weakly luminescent at 77 K, exhibiting emissions at lambda(max), 598 nm [quantum yield (Phi) = 0.43 x 10(-2)] and 574 nm (Phi = 0.28 x 10(-2)) for 1 and 2, respectively.  相似文献   

8.
Singh HB  Agnihotri NK  Singh VK 《Talanta》1999,48(3):623-631
A sensitive derivative spectrophotometric method using 1-nitroso-2-naphthol has been developed for determination of trace amounts of cobalt in the presence of a neutral surfactant. Photometric parameters, viz., lambda(max), molar absorption coefficient and analytical sensitivity of the complex formed in micellar media are 420 nm, 3.18x10(4) l mol(-1) cm(-1) and 2.05 ng ml(-1), respectively. Beer's law holds from 0.20 to 3.0 mug ml(-1) of the analyte concentration. The method has a high sensitivity with a detection limit of 1.68 ng ml(-1). A selective determination of cobalt in presence of copper(II) or iron(III) using derivative spectral profiles and without any masking or pre-separation is also reported. Samples of drugs and standard alloys analysed by the proposed method yielded results comparable to those obtained using recommended procedures.  相似文献   

9.
A novel low power, low cost, highly sensitive, miniaturized light emitting diode (LED) based flow detector has been used as optical detector for the detection of sample components in high performance liquid chromatography (HPLC). This colorimetric detector employs two LEDs, one operating in normal mode as a light source and the other is reverse biased to work as a light detector. Instead of measuring the photocurrent directly, a simple timer circuit is used to measure the time taken for the photocurrent generated by the emitter LED (lambda(max) 500 nm) to discharge the detector LED (lambda(max) 621 nm) from 5 V (logic 1) to 1.7 V (logic 0) to give digital output directly without using an A/D converter. Employing a post-column reagent method, a Nucleosil 100-7 column (functionalized with iminodiacetic acid (IDA) groups) was used to separate a mixture of transition metal complexes, manganese(II) and cobalt(II) in 4-(2-pyridylazo)-resorcinol (PAR). All optical measurements were taken by using both the in-built HPLC variable wavelength detector and the proposed paired-emitter-detector-diode (PEDD) optical detector configured in-line for data comparison. The concentration range investigated using the PEDD was found to give a linear response to the Mn(II) and Co(II) PAR complexes. The effects of flow rate and emitter LED light source intensity were investigated. Under optimised conditions the PEDD detector offered a linear range of 0.9-100 microM and LOD of 0.09 microM for Mn-PAR complex. A linear range of 0.2-100 microM and LOD of 0.09 microM for Co-PAR complex was achieved.  相似文献   

10.
Endo M  Abe S  Deguchi Y  Yotsuyanagi T 《Talanta》1998,47(2):349-353
A highly sensitive and simple visual autocatalytic method has been developed for the determination of trace cobalt. The cobalt ion released by the oxidative decomposition of inert bis[2-(5-bromo-2-pyridylazo)-5-(N-propyl-N-sulfopropyl-amino-phenolato] cobaltate (Co(III)-5-Br-PAPS) with peroxomonosulfate acts as a catalyst for the oxidative degradation of the complex. Thus a definite time lapse of degradation is observed by the sudden disappearance of colored Co(III) complexes. The degradation time varies inversely with the logarithm of the initial concentration of cobalt(II). The determination range of cobalt(II) was from 3x10(-9) to 2x10(-7) M in the presence of 5x10(-6) M of 5-Br-PAPS. The relative standard deviation of the spot size method (10 mul) was 3.5% at 1x10(-7) M cobalt(II). This autocatalytic indicator reaction system has been successfully applied for the visual determination of urinary cobalt.  相似文献   

11.
Murti MV  Khopkar SM 《Talanta》1976,23(3):246-248
Thiobenzoylacetone in benzene is used for the extraction and spectrophotometric determination of cobalt at pH 8.4-9.1. The orange-yellow complex is measured at 460 nm. The system conforms to Beer's law over the range 0.20-4.58 microg ml of extract. The colour of the complex is stable for at least 144 hr. Cobalt(II) is quantitatively extracted and determined in the presence of 200:1 (w w ratios) of various ions. The method is made selective by using common sequestering agents such as thiourea or fluoride or by selective extraction with mesityl oxide, tributylphosphate and acetylacetone. It is possible to determine cobalt in the presence of nickel by simultaneous spectrophotometry. The method is rapid, simple, selective and sensitive.  相似文献   

12.
Balcerzak M  Swicicka E 《Talanta》1996,43(3):471-478
Ruthenium and osmium (up to 20 mug Ru(Os) ml(-1)) can be determined in chloride solutions directly after absorption of RuO(4) and OsO(4) in hydrochloric acid. In 9 M HCl, RuO(4) and OsO(4) are quantitatively converted into RuCl(6)(2-) (lambda(max) = 480.0 nm, epsilon = 4.8 x 10(3) l mol(-1) cm(-1)) and OsCl(6)(2-) (lambda(max) = 334.8 nm, epsilon = 8.4 x 10(3) l mol(-1) cm(-1)) respectively. Osmium does not interfere with the determination of ruthenium in the form of the RuCl(6)(2-) complex by direct spectrophotometry. The absorbance of the obtained solution at lambda(max) = 480.0 nm corresponds only to the concentration of ruthenium. A derivative spectrophotometric method using numerical calculation of absorption spectra of the RuCl(6)(2-) and OsCl(6)(2-) complexes has been developed for the determination of osmium in a mixture with ruthenium. The interfering effect of ruthenium on the determination of osmium can be eliminated by measuring the value of a third-order derivative spectrum of the OsCl(6)(2-) complex at 350.0 nm ("zero-crossing point" of ruthenium). Simple and rapid determination of ruthenium and osmium in a calibration standard solution of the noble metals (Ru, Rh, Pd, Os, Ir, Pt and Au) for plasma spectroscopy using the proposed methods has been achieved.  相似文献   

13.
Cyanex 923 has been proposed as a sensitive analytical reagent for the direct extractive spectrophotometric determination of cobalt(II). Cobalt(II) forms a blue-colored complex with Cyanex 923 in the organic phase. The maximum absorbance of the complex is measured at 635 nm. Beer's law was obeyed in the range 58.9 - 589.0 microg of cobalt. The molar absorptivitiy and Sandell's sensitivity of the complex was calculated to be 6.79 x 10920 l mol(-1) cm(-1) and 0.088 microg cm(-2), respectively. The nature of the extracted species was found to be Co(SCN)2 x 2S. An excellent linearity with a correlation coefficient value of 0.999 was obtained for the Co(II)-Cyanex 923 complex. Stability and regeneration of the reagent (Cyanex 923) for reuse is the main advantage of the present method. The method was successfully applied to the determination of cobalt in synthetic mixtures and pharmaceutical samples was found to give values close to the actual ones. Standard alloy samples, such as high-speed tool BCS 484 and 485, have been tested for the determination of cobalt for the purpose of validating the present method. The results of the proposed method are comparable with atomic absorption spectrometry and were found to be in good agreement.  相似文献   

14.
Jadhav SB  Tandel SP  Malve SP 《Talanta》2001,55(6):3335-1064
A simple and selective method is proposed for the extraction of cobalt(II) for its spectrophotometric determination using (HIMH) as an extractant. Cobalt(II) forms a yellow coloured complex with HIMH which can be extracted into chloroform. The calibration curve is rectilinear in the concentration range 0.1–5.0 μg ml−1 of cobalt(II). The extracted species shows an absorption maximum at 400 nm with molar absorptivity of 1.135×104 l mol−1 cm−1. The method has been applied for the determination of cobalt in synthetic mixtures, pharmaceutical, biological and high speed steel samples.  相似文献   

15.
3-(5'-tetrazolylazo)-2,6-Diaminotoluene (TEADAT, H(3)L(2+)) forms stable 1:1 and 1:2 (metal:ligand) pink-red complexes (lambda(max) 506 and 536 nm) with palladium(II). The apparent molar absorptivity of 1:2 complex is 5.2 x 10(4) 1.mol(-1). cm(-1) at 536 nm. Equilibrium constants beta*(nl) for reactions PdCl(2-)(4) + nH(3)L(2+) right harpoon over left harpoonright harpoon over left harpoon PdCl(4-n) (H(2)L)(2n-2)(n) + n Cl(-) + n H(+) were determined: logbeta*(1) = 4.09 +/- 0.05, logbeta*(2) = 8.40 +/- 0.02, corresponding stability conditional constants of PdCl(3)(H(2)L) and PdCl(2)(H(2)L)(2+)(2) were log beta(1) = 19.03, log beta(2) = 26.74. The formation of complexes was rather slow but could be speeded up considerably by the catalytic effect of trace amounts of thiocyanate. Constant absorbance values were thus reached in 2-5 min. A rapid, sensitive and highly specific method for the determination of palladium(II) at pH 1.42 in 0.25M NACl has been worked out with a detection limit of 0.54 mug. Interference of precious and common metal ions have been studied and the method has been applied for the determination of palladium in Pd asbestos, oakay alloys and various catalysts and for the determination of palladium in precious metals.  相似文献   

16.
The photophysical properties of the complex (L)Ir(ppy)(2)(+), where ppy = 2-phenylpyridine and L = 4,4'-(2,2'-bipyridine-5,5'-diylbis(ethyne-2,1-diyl))bis(N,N-dihexylaniline), have been investigated under one- and two-photon excitation conditions. In THF solution, the complex exhibits broad ground-state absorption with lambda(max) approximately 500 nm and weak photoluminescence with lambda(max) approximately 730 nm. Excitation of (L)Ir(ppy)(2)(+) at 355 nm produces a long-lived excited state (tau approximately 1 mus) that features a strong excited-state absorption in the near-infrared (lambda(max) approximately 875 nm, Deltaepsilon approximately 6.1 x 10(4) M(-1) cm(-1)). Photoluminescence and transient absorption studies of (L)Ir(ppy)(2)(+) carried out using 5 ns, 1064 nm pulsed excitation demonstrate that the same long-lived and strongly absorbing excited state can be efficiently produced by two-photon absorption. Solutions of the complex in THF display nonlinear absorption of 5 ns, 1064 nm pulses in a process that is believed to involve a combination of two-photon absorption and reverse saturable absorption.  相似文献   

17.
N-Methylaminothioformyl-N'-phenylhydroxylamine forms a 1:2 (metal:ligand) greenish yellow complex with cobalt(II). This complex has maximum absorption at 470 nm with a molar absorptivity of 1.65 x 10(4) 1.mole(-1).cm(-1). Beer's law is obeyed over the concentration range 6 x 10(-6)-6 x 10(-5)M. The effect of diverse ions is described.  相似文献   

18.
Chromogenic receptors 2 and 3 undergo distinct colour changes from magenta to blue on gradual addition of Cu(II) and can be used as colorimetric probes for spectrophotometric and visual analysis of Cu(II) in the presence of biological metal ions Na(I), K(I), Mg(II), Ca(II), Fe(II), Zn(II) etc. in aqueous solution (methanol-water 1 : 1 v/v). On addition of Cu(II), both 2 and 3 exhibit a bathochromic shift of Delta lambda(max) = 114 nm for 2 and Delta lambda(max)= 150 and 265 nm for receptor 3. The protonation constants and formation constants of Cu(II) complexes of receptors 2 and 3 (at pH 7) and the effect of pH on formation of these complexes has been determined by the combination of UV-vis-pH titrations of receptors 2 and 3 and their Cu(II) complexes. These results and the emergence of only one peak at 610 nm for 2 and two distinct absorption peaks at 715 and 800 nm for 3 on addition of Cu(II) unambiguously point to mono- and di-deprotonation for 2 and 3, respectively.  相似文献   

19.
Puri BK  Balani S 《Talanta》1995,42(3):337-344
Iron, cobalt and copper form coloured water soluble anionic complexes with disodium 1-nitroso-2-naphthol-3-6-disulphonate (nitroso R-salt). The anionic complex is retained quantitatively as a water insoluble neutral ion associated complex (M-nitroso R-TDBA) on tetradecyldimethylbenzylammonium iodide on naphthalene (TDBA(+)I(-)-naphthalene) packed column in the pH range of: Fe(III): 3.1-6.5, Co: 3.4-8.5 and Cu 5.9-8.0 when their solutions are passed individually over this adsorbent at a flow rate of 0.5-5.0 ml/min. The solid mass consisting of an ion associated metal complex along with naphthalene is dissolved out of the column with 5 ml dimethylformamide/chloroform and metals are determined spectrophotometrically. The absorbance is measured at 710 nm for iron, 425 nm for cobalt and 480 nm for copper. Beers law is obeyed in the concentration range 9.2-82 mug of iron, 425 nm for cobalt cobalt and 3.0-62 mug of copper in 5 ml of final DMF/CHCl(3) solution. The molar absorptivities are calculated to be Fe: 7.58 x 10(3), Co: 1.33 x 10(4) and Cu: 4.92 x 10(4)M(-1)cm(-1). Ten replicate determinations containing 25 mug of iron, 9.96 mug of cobalt and 3.17 mug of copper gave mean absorbances 0.677, 0.450 and 0.490 with relative standard deviations of 0.88, 0.98 and 0.92%, respectively. The interference of large number of metals and anions on the estimations of these metals has been studied. The optimized conditions so developed have been employed for the trace determination of these metals in standard alloys, waste water and fly ash samples.  相似文献   

20.
设计合成了4′-(二茂铁基)-2,2′∶6′,2″-三联吡啶钴(Ⅱ)配合物1以及参比配合物4′-(4-甲苯基)-2,2′∶6′,2″-三联吡啶钴(Ⅱ)配合物2和2,2′∶6′,2″-三联吡啶钴(Ⅱ)配合物3,配合物1中二茂铁基给电子基团的引入使其在可见光区的吸收明显增强,并在部分氧化时呈现混合价态的电荷转移(MVCT)吸收.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号