首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nash-Williams and Tutte independently characterized when a graph has k edge-disjoint spanning trees; a consequence is that 2k-edge-connected graphs have k edge-disjoint spanning trees. Kriesell conjectured a more general statement: defining a set SV(G) to be j-edge-connected in G if S lies in a single component of any graph obtained by deleting fewer than j edges from G, he conjectured that if S is 2k-edge-connected in G, then G has k edge-disjoint trees containing S. Lap Chi Lau proved that the conclusion holds whenever S is 24k-edge-connected in G.We improve Lau?s result by showing that it suffices for S to be 6.5k-edge-connected in G. This and an analogous result for packing stronger objects called “S-connectors” follow from a common generalization of the Tree Packing Theorem and Hakimi?s criterion for orientations with specified outdegrees. We prove the general theorem using submodular functions and the Matroid Union Theorem.  相似文献   

2.
Connectivity of iterated line graphs   总被引:1,自引:0,他引:1  
Let k≥0 be an integer and Lk(G) be the kth iterated line graph of a graph G. Niepel and Knor proved that if G is a 4-connected graph, then κ(L2(G))≥4δ(G)−6. We show that the connectivity of G can be relaxed. In fact, we prove in this note that if G is an essentially 4-edge-connected and 3-connected graph, then κ(L2(G))≥4δ(G)−6. Similar bounds are obtained for essentially 4-edge-connected and 2-connected (1-connected) graphs.  相似文献   

3.
We prove a decomposition result for locally finite graphs which can be used to extend results on edge-connectivity from finite to infinite graphs. It implies that every 4k-edge-connected graph G contains an immersion of some finite 2k-edge-connected Eulerian graph containing any prescribed vertex set (while planar graphs show that G need not containa subdivision of a simple finite graph of large edge-connectivity). Also, every 8k-edge connected infinite graph has a k-arc-connected orientation, as conjectured in 1989.  相似文献   

4.
Barát and Thomassen have conjectured that, for any fixed tree T, there exists a natural number k T such that the following holds: If G is a k T -edge-connected graph such that |E(T)| divides |E(G)|, then G has a T-decomposition. The conjecture is trivial when T has one or two edges. Before submission of this paper, the conjecture had been verified only for two other trees: the paths of length 3 and 4, respectively. In this paper we verify the conjecture for each path whose length is a power of 2.  相似文献   

5.
Fengxia Liu 《Discrete Mathematics》2008,308(16):3711-3716
Let G=(V,E) be a simple connected graph and xV(G). The set {xg:gAut(G)} is called an orbit of Aut(G). In this paper, we determine the edge connectivity of 3-regular and 4-regular connected graphs with two orbits, and prove the existence of k-regular m-edge-connected graphs with two orbits for some given integers k and m. Furthermore, we prove that the edge connectivity of a k-regular connected graph with two orbits and girth?5 attains its regular degree k.  相似文献   

6.
We prove:
  1. Fork ≥ 2 andα = 0, 1, every (4k + 2α)-edge-connected graph is weakly (3k + 2α)-linked.
  2. IfG is ak-edge-connected graph (k ≥ 2),s, t are vertices andf is an edge, then there exists a pathP betweens andt such thatf ? E(P) andG ? E(P) ? f is (k ? 2)-edge-connected, whereE(P) denotes the edge set ofP.
  相似文献   

7.
Let A be an abelian group with |A|?≥ 4. For integers k and l with k?>?0 and l?≥ 0, let ${{\mathcal C}(k, l)}$ denote the family of 2-edge-connected graphs G such that for each edge cut ${S\subseteq E(G)}$ with two or three edges, each component of G ? S has at least (|V(G)| ? l)/k vertices. In this paper, we show that if G is 3-edge-connected and ${G\in {\mathcal C}(6,5)}$ , then G is not A-connected if and only if G can be A-reduced to the Petersen graph.  相似文献   

8.
A graph G is vertex pancyclic if for each vertex \({v \in V(G)}\) , and for each integer k with 3 ≤ k ≤ |V(G)|, G has a k-cycle C k such that \({v \in V(C_k)}\) . Let s ≥ 0 be an integer. If the removal of at most s vertices in G results in a vertex pancyclic graph, we say G is an s-vertex pancyclic graph. Let G be a simple connected graph that is not a path, cycle or K 1,3. Let l(G) = max{m : G has a divalent path of length m that is not both of length 2 and in a K 3}, where a divalent path in G is a path whose interval vertices have degree two in G. The s-vertex pancyclic index of G, written vp s (G), is the least nonnegative integer m such that L m (G) is s-vertex pancyclic. We show that for a given integer s ≥ 0,
$vp_s(G)\le \left\{\begin{array}{l@{\quad}l}\qquad\quad\quad\,\,\,\,\,\,\, l(G)+s+1: \quad {\rm if} \,\, 0 \le s \le 4 \\ l(G)+\lceil {\rm log}_2(s-2) \rceil+4: \quad {\rm if} \,\, s \ge 5 \end{array}\right.$
And we improve the bound for essentially 3-edge-connected graphs. The lower bound and whether the upper bound is sharp are also discussed.
  相似文献   

9.
In this paper, we show that if the second largest eigenvalue of a d-regular graph is less than , then the graph is k-edge-connected. When k is 2 or 3, we prove stronger results. Let ρ(d) denote the largest root of x3-(d-3)x2-(3d-2)x-2=0. We show that if the second largest eigenvalue of a d-regular graph G is less than ρ(d), then G is 2-edge-connected and we prove that if the second largest eigenvalue of G is less than , then G is 3-edge-connected.  相似文献   

10.
A set of vertices D of a graph G is geodetic if every vertex of G lies on a shortest path between two not necessarily distinct vertices in D. The geodetic number of G is the minimum cardinality of a geodetic set of G.We prove that it is NP-complete to decide for a given chordal or chordal bipartite graph G and a given integer k whether G has a geodetic set of cardinality at most k. Furthermore, we prove an upper bound on the geodetic number of graphs without short cycles and study the geodetic number of cographs, split graphs, and unit interval graphs.  相似文献   

11.
It is known that if G is a connected simple graph, then G3 is Hamiltonian (in fact, Hamilton-connected). A simple graph is k-ordered Hamiltonian if for any sequence v1, v2,…,vk of k vertices there is a Hamiltonian cycle containing these vertices in the given order. In this paper, we prove that if k?4, then G⌊3k/2⌋-2 is k-ordered Hamiltonian for every connected graph G on at least k vertices. By considering the case of the path graph Pn, we show that this result is sharp. We also give a lower bound on the power of the cycle Cn that guarantees k-ordered Hamiltonicity.  相似文献   

12.
We have proved that every 3-connected planar graph G either contains a path on k vertices each of which has degree at most 5k or does not contain any path on k vertices; the bound 5k is the best possible. Moreover, for every connected planar graph H other than a path and for every integer m ≥ 3 there is a 3-connected planar graph G such that each copy of H in G contains a vertex of degree at least m.  相似文献   

13.
Given two nonnegative integers s and t, a graph G is (s,t)-supereulerian if for any disjoint sets X,YE(G) with |X|≤s and |Y|≤t, there is a spanning eulerian subgraph H of G that contains X and avoids Y. We prove that if G is connected and locally k-edge-connected, then G is (s,t)-supereulerian, for any pair of nonnegative integers s and t with s+tk−1. We further show that if s+tk and G is a connected, locally k-edge-connected graph, then for any disjoint sets X,YE(G) with |X|≤s and |Yt, there is a spanning eulerian subgraph H that contains X and avoids Y, if and only if GY is not contractible to K2 or to K2,l with l odd.  相似文献   

14.
We construct three new infinite families of hypohamiltonian graphs having respectively 3k+1 vertices (k?3), 3k vertices (k?5) and 5k vertices (k?4); in particular, we exhibit a hypohamiltonian graph of order 19 and a cubic hypohamiltonian graph of order 20, the existence of which was still in doubt. Using these families, we get a lower bound for the number of non-isomorphic hypohamiltonian graphs of order 3k and 5k. We also give an example of an infinite graph G having no two-way infinite hamiltonian path, but in which every vertex-deleted subgraph G - x has such a path.  相似文献   

15.
Let G be a k-connected graph where k≥3. It is shown that if G contains a path L of length l then G also contains a cycle of length at least ((2k ? 4)(3k ? 4)) l. This result is obtained from a constructive proof that G contains 3k2 ? 7k + 4 cycles which together cover every edge of L at least 2k2 ? 6k + 4 times.  相似文献   

16.
Degree conditions for group connectivity   总被引:1,自引:0,他引:1  
Let G be a 2-edge-connected simple graph on n≥13 vertices and A an (additive) abelian group with |A|≥4. In this paper, we prove that if for every uvE(G), max{d(u),d(v)}≥n/4, then either G is A-connected or G can be reduced to one of K2,3,C4 and C5 by repeatedly contracting proper A-connected subgraphs, where Ck is a cycle of length k. We also show that the bound n≥13 is the best possible.  相似文献   

17.
In this paper we show that the entire graph of a bridgeless connected plane graph is hamiltonian, and that the entire graph of a plane block is hamiltonian connected and vertex pancyclic. In addition, we show that in any block G which is not a circuit, given a vertex v of G and a circuit k of G, there is a path p, suspended in G, such that p is a path in k of length at least 1 and G ? E(p) ? V0(G ? E(p)) is a block which includes v.  相似文献   

18.
It is shown that every k-edge-connected digraph with m edges and n vertices contains a spanning connected subgraph having at most 2m + 6(k ?1)(n ? 1))(5k ? 3) edges. When k = 2 the bound is improved to (3m + 8(n ? 1))10, which implies that a 2-edge-connected digraph is connected by less than 70% of its edges. Examples are given which require almost two-thirds of the edges to connect all vertices.  相似文献   

19.
A graph G = (V, E) is k-edge-connected if for any subset E′ ⊆ E,|E′| < k, GE′ is connected. A dk-tree T of a connected graph G = (V, E) is a spanning tree satisfying that ∀vV, dT(v) ≤ + α, where [·] is a lower integer form and α depends on k. We show that every k-edge-connected graph with k ≥ 2, has a dk-tree, and α = 1 for k = 2, α = 2 for k ≥ 3. © 1998 John Wiley & Sons, Inc. J Graph Theory 28: 87–95, 1998  相似文献   

20.
The supereulerian graph problem, raised by Boesch et al. (J Graph Theory 1:79–84, 1977), asks when a graph has a spanning eulerian subgraph. Pulleyblank showed that such a decision problem, even when restricted to planar graphs, is NP-complete. Jaeger and Catlin independently showed that every 4-edge-connected graph has a spanning eulerian subgraph. In 1992, Zhan showed that every 3-edge-connected, essentially 7-edge-connected graph has a spanning eulerian subgraph. It was conjectured in 1995 that every 3-edge-connected, essentially 5-edge-connected graph has a spanning eulerian subgraph. In this paper, we show that if G is a 3-edge-connected, essentially 4-edge-connected graph and if for every pair of adjacent vertices u and v, d G (u) + d G (v) ≥ 9, then G has a spanning eulerian subgraph.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号