首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The temperature dependence of the saturated vapor pressure of the trans-Pt(ktf)2 complex obtained from fluorinated β-ketoimine (CF3-CO-CH2-C(NH)-CH3) was studied by the flow method. The standard thermodynamic parameters ΔH 0 T and ΔS 0 T of sublimation have been determined. Full crystal-chemical study has been performed for the complex. Crystal data for C10H10F6N2O2Pt: a = 5.9790(8) Å, b = 7.373(2) Å, c = 8.5767(2) Å,α = 84.05(2)°, β = 72.43(1)°, γ = 67.14(1)°, V = 332.1(1) Å3, Z = 1, dcalc = 2.496 g/cm3, triclinic, space group \(P\bar 1\). The structure is molecular and consists of isolated trans-Pt(ktf)2 complexes. The Pt atom lies at the symmetry center and has a square planar environment of two oxygen and two nitrogen atoms; the distances Pt-O (1.984 Å) and Pt-N (1.969 Å) are similar within the limits of 2σ; the OPtN bond angle is 93.9°. Molecular packing in crystal is considered based on structural data; van der Waals energy of the crystal lattice of trans-Pt(ktf)2 was calculated by the atom-atom potential method.  相似文献   

2.
The crystal structure of (hexafluoroacetylacetonato)(pivaloylacetonato)copper(II) has been determined. Crystal data for CuO4C13H14F6: a = 8.288(2) Å, b = 8.682(2) Å, c = 12.307(2) Å; α = 90.75(3)°, β = 94.29(3)°, γ = 106.60(3)°; V = 845.7(3) Å3, space group \(P\overline 1 \), Z = 2, dcalc = 1.617 g/cm3. The coordination polyhedron of the copper atom is formed by four oxygen atoms of two different β-diketonate ligands with Cu-O distances within 1.874–1.946 Å; the O-Cu-O bond angles are 94.8° and 90.6°. The complexes are united into centrosymmetrical “dimers” with Cu...Cu distances of 4.365 Å.  相似文献   

3.
Double ionic complexes [M(C5H5NCOO)3(H2O)2][Cr(NCS)6] · nH2O, where M = Eu (I), n = 1.15; Dy (II), Er (III), n = 1.5; M = Yb (IV), n = 2, have been synthesized by the reaction between M(NO3)3, M = Eu, Dy, Er, Yb, K3[Cr(NCS)6], and nicotinic acid (C5H5NCOO) in an aqueous solution and studied by chemical analysis, IR spectroscopy, and X-ray diffraction. Crystals of complexes IIV are monoclinic, space group P21/n, Z = 4; a = 9.5358(2) Å, b = 25.4871(5) Å, c = 15.4303(4) Å, β = 105.513(1)°, V = 3613.6(1) Å3, ρcalcd = 1.799 g/cm3 for I, a = 9.5901(5) Å, b = 25.8599(15) Å, c = 15.6316(9) Å, β = 106.829(2)°, V = 3710.6(4) Å3, ρcalcd = 1.782 g/cm3 for II, a = 9.5640(3) Å, b = 25.8936(11) Å, c = 15.6498(7) Å, β = 106.895(2)°, V = 3708.3(3) Å3, ρcalcd = 1.791 g/cm3 for III, and a = 9.5049(2) Å, b = 25.6378(4) Å, c = 15.5120(3) Å, β = 106.934(1)°, V = 3616.1(1) Å3, ρcalcd = 1.864 g/cm3 for IV.  相似文献   

4.
The crystal structure of the [Pt(NH3)5Cl](ReO4)3·2H2O salt is determined. Crystallographic data: a = 10.3476(2) Å, b = 12.8955(2) Å, c = 14.3536(3) Å, β = 105.241(10)°, V = 1847.94(6) Å3, space group P 21/n, Z = 4, d x = 3.962 g/cm3. Thermal decomposition of the compound is studied in a helium and hydrogen atmosphere. A two-phase product arises in the former case, in the latter a substitution Re0.75Pt0.25 solid solution with unit cell parameters: a = 2.767(2) Å, c = 4.441(3) Å, space group P63/mmc.  相似文献   

5.
Two dinuclear complexes [Zn(μ-L)(NO3)(H2O)]2 (1) and [Cu2(μ-L)2(HL)2](NO3)2(C12H8Br2)0.5·H2O (2), (HL = 3-(2-pyridyl)pyrazole, C12H8Br2 = 4,4′-dibromobiphenyl) are synthesized under hydrothermal conditions and characterized by elemental analysis and X-ray single crystal diffraction. Crystal data for 1: triclinic, \(P\bar 1\), a = 8.8478(7) Å, b = 15.0550(11) Å, c = 16.4310(12) Å, α = 107.588(4)°, β = 112.498(3)°, γ = 115.595(3)°, V = 2099.8(9) Å3, Z = 2; for 2: triclinic, \(P\bar 1\), a = 7.2870(15) Å, b = 8.6840(17) Å, c = 9.3290(19) Å, α = 107.588(4)°, β = 112.498(3)°, γ = 115.595(3)°, V = 528.77(18) Å3, Z = 1. Complex 1 and 2 are both dinuclear structures which are further packed into a 1D supramolecular chain and a 3D supramolecular framework via weak C–H…O hydrogen bond interactions respectively.  相似文献   

6.
Thermal decomposition of [Pt(NH3)4][ReHlg6] binary complex salts (Hlg = Cl, Br) in a hydrogen atmosphere has been studied. Polycrystal X-ray diffractometry indicated that two-phase metallic systems are the final products of thermolysis. Structure refinement was performed for [Pt(NH3)4][ReCl6] by the combined technique involving decomposition of the diffractogram into individual reflections, isolation of reflections most sensitive to the position of separate light atoms, and full-profile analysis. Crystal data for PtReN4Cl6H12: a = 11.616(1) Å, b = 10.998(1) Å, c = 10.377(1) Å, V = 1148.1 Å3, space group Cmca, Z = 4, d x = 3.831 g/cm3. The indices are Rp = 5.48%, Rwp = 10.01%, R(F2) = 12.62%. The coordination polyhedron of Re is an almost regular octahedron: Re-Cl 2.34–2.36 Å, ∠ Cl-Re-Cl 86.9–90.3°; the coordination polyhedron of Pt is a square: Pt-N 2.04 Å, ∠N-Pt-N 90.4°.  相似文献   

7.
A novel volatile Pt(II)β-iminoketonate complex is synthesized. β-Aminovinylketone H(i-ptac) = [CF3–C(O)–CH=C(NH2)–C(CH3)3] is used as a ligand. The XRD method is used to determine the structures of the ligand and the complex. The crystallographic data for C16H22F6N2O2Pt are as follows: a = 10.0716(4) Å, b = 10.9572(4) Å, c = 9.6322(4) Å, β = 110.9010(10)°, space group С2/m, Z = 2, R = 0.011. The platinum atom has a square planar coordination with two oxygen and two nitrogen atoms of two bidentately linked ketoiminate ligands in trans-position; the PtO2N2 coordination site is formed.  相似文献   

8.
New double complexes [Co(DMSO)6][SiF6] ? 2H2O (I) and [Co(DMF)3(H2O)3][SiF6] ? DMF (II) have been synthesized and studied by IR spectroscopy and X-ray diffraction. Crystals of complex I belong to the tetragonal symmetry system, space group R3?, Z = 3, a = 11.8232(3) Å, c = 18.4699(5) Å, V = 2235.97(10) Å3, ρcalc = 1.573 g/cm3. Crystals of complex II are triclinic, space group P1?, Z = 2, a = 8.6264(4) Å, b = 10.1419(4) Å, c = 13.9657(6) Å, α = 100.847(2)°, β = 98.549(2)°, γ = 93.479(2)°, V = 1181.71(9) Å3, ρcalc = 1.539 g/cm3.  相似文献   

9.
Synthesis and single crystal X-ray diffraction study of hafnium(IV) dipivaloylmethanate Hf(dpm)4 and chloro-tris-(dipivaloylmethanato)hafnium(IV) Hf(dpm)3Cl have been carried out. Crystal data: a = 22.6606(5) Å, b = 11.3990(4) Å, c = 19.8513(7) Å, β = 106.458(1)°, Pc, Z = 4, d calc = 1.231 g/cm3, R = 0.075 for C44H76HfO8; a = 10.6376(13) Å, b = 10.6701(10) Å, c = 19.4400(22) Å, α = 74.970(3)°, β = 75.672(3)°, γ = 61.725(2)°, P-1, Z = 2, d calc = 1.366 g/cm3, R = 0.031 for C33H57ClHfO6. The structures are molecular and are built from discrete mononuclear complexes joined by van der Waals interactions. Disordering of carbon atoms preserving at low temperature is observed for the compound Hf(dpm)4. It has been found out that the structure contains two crystallographically unique complexes of hafnium(IV) with central atoms coordinated with eight oxygen atoms of four dipivaloylmethane ligands, bond lengths Hf-O fall within 2.084–2.222 Å, the distances Hf...Hf between the molecules are 10.07–13.87 Å. In Hf(dpm)3Cl the hafnium atom is seven-coordinated with six oxygen atoms of three β-diketonate ligands and one chlorine atom, the distances Hf-O fall within 2.087–2.179 Å, the lengths of the bond Hf-Cl for two crystallographically independent molecules Hf(1) and Hf(2) are 2.466 Å and 2.442 Å, respectively.  相似文献   

10.
The (DienH3)[AuCl4]3 · H2O (I) and (DienH3)2[AuCl4]Cl5 (II) compounds were obtained by the reaction of HAuCl4 with diethylenetriamine trihydrochloride (DienH3Cl3) in hydrochloric acid. The compounds were characterized by elemental analysis, X-ray diffraction, thermogravimetry, and IR spectroscopy. Crystals of I and II are monoclinic with space group P21/n. For I, a = 12.2314(3) Å, b = 14.6077(5) Å, c = 13.2680(5) Å, β = 106.7350(10)°, V = 2270.22(13) Å3, Z = 8. For II, a = 6.62990(10) Å, b = 17.9026(5) Å, c = 10.3661(3) Å, β = 101.9230(10)°, V = 1203.83(5) Å3, Z = 2. Both structures are ionic. The gold atoms in I and II have a 4 + 2 coordination environment. The Au-Cl bond lengths are within 2.276–2.294 Å, and the axial Au…Cl contacts are within 3.315–3.405 Å. The diethylenetriammonium cation in I and II has different conformations.  相似文献   

11.
Reactions of acetamide with platinum(II) diamines [Pt(N,N-DimeEn)Cl2], [Pt(Tm)Cl2], and [Pt(N,N-DimeTm)Cl2] (N,N-DimeEn = (CH3)2N(CH2)2NH2, Tm = NH2(CH2)3NH2, N,N-DimeTm = (CH3)2N(CH2)3NH2) with preliminary precipitation of chlorine ions by silver salts gave binuclear Pt(II) acetamidates [Pt2(CH3)2N(CH2)2NH2)2(μ-NHCOCH3)2](NO3)2 · H2O (I), [Pt2(NH2(CH2)3NH2)2)(μ-NHCOCH3)2](NO3)2 · H2O (II), and [Pt2(CH3)2N(CH2)3NH2)2(μ-NHCOCH3)2](HSO4)2 (III), whose crystal structures were determined. Crystals of I are monoclinic: a = 14.459(2) Å, b = 17.197(3) Å, c = 9.822(2) Å, β = 105.923(10)°, V = 3348.6(8) Å3, space group P2(1)/c, Z = 4, R hkl = 0.0419 for 6663 reflections. Complex I is a binuclear acetamidate with bridging (NHCOCH3)? ligands, one of which is bound to two Pt atoms through the N and O atoms, and the other ligand is bound only through the N atom. The Pt-Pt distance is 2.987(1) Å. Crystals of II are monoclinic: a = 10.213(7) Å, b = 13.373(9) Å, c = 16.533(11) Å, β = 97.971(9)°, V = 2236(3) Å3, space group P2(1)/n, Z = 4, R hkl = 0.557 for 6462 reflections. The Pt-Pt distance is 3.057(1) Å. Crystals of III are monoclinic: a = 10.557(12) Å, b = 18.531(2) Å, c = 14.4744(17) Å, β = 108.705(2)°, V = 2682(5) Å3, space group P2(1)/n, Z = 4, R hkl = 0.569 for 8506 reflections. The Pt-Pt distance is 3.202(1) Å. Complexes II and III are binuclear acetamidates, in which two chelating Pt(Tm) or Pt(N,N-DimeTm) moieties are coordinated through the N and O atoms of (NHCOCH3)? cis-bridges.  相似文献   

12.
Tetramminenickel hydrogen hexamolybdoaluminate and hexamolybdogallate(III) of compositions [Ni(NH3)4] · H[AlMo6O18(OH)6] · 10H2O (I) and [Ni(NH3)4] · H[GaMo6O18(OH)6] · 10H2O (II) were synthesized and characterized by mass spectrometry, thermogravimetry, X-ray powder diffraction, and IR spectroscopy. Their crystals are triclinic. For compound I, a= 17.30 Å, b= 14.69 Å, c= 10.45 Å, α = 129.07, β = 65.91°, γ = 138.01°, V = 1338.7l Å3, ρcalcd = 2.75g/cm3, Z = 2; for compound II, a = 17.38 Å, b= 14.75 Å, c= 10.51 Å, α = 131.38°, β= 65.96°, γ = 138.09, V = 1338.15 Å3, ρcalcd = 2.68 g/cm3, Z = 2.  相似文献   

13.
Two new isostructural zinc(II) complexes, [ZnCl2(L)] (I) and [ZnBr2(L)] (II), derived from the Schiff base ligand (1-pyridin-2-ylethylidene)pyridin-2-ylmethylamine (L), have been prepared and characterized by physicochemical methods and single-crystal X-ray crystallography. The crystal of I is monoclinic: space group P21/c, a = 11.699(3) Å, b = 8.460(2) Å, c = 14.766(3) Å, β = 99.686(3)°, V = 1440.6(6) Å3, Z = 4. The crystal of II is monoclinic: space group P21/n, a = 8.166(2) Å, b = 15.153(3) Å, c = 11.966(2) Å, β = 96.964(2)°, V = 1469.7(5) Å3, Z = 4. The geometry of the pentacoordinated zinc atoms in both complexes is best described as a square pyramid.  相似文献   

14.
The structures of the Pd4(SBu)4(OAc)4 (I) and Pd6 (SBu)12 (II) palladium clusters are determined by the X-ray diffraction method. For cluster I: a = 8.650(2), b = 12.314(2), c = 17.659(4) Å, α = 78.03(3)°, β = 86.71(2)°, γ = 78.13(3)°, V = 1800.8(7) Å3, ρcalcd = 1.878 g/cm3, space group P \(\bar 1\), Z = 4, N = 3403, R = 0.0468; for structure II: a = 10.748(2), b = 12.840(3), c = 15.233(3) Å, α = 65.31(3)°, β = 70.10(3)°, γ = 72.91(3)°, V = 1767.4(6) Å3, ρ calcd = 1.605 g/cm3, space group P \(\bar 1\), Z = 1, N = 3498, R = 0.0729. In cluster I, four Pd atoms form a planar cycle. The neighboring Pd atoms are bound by two acetate or two mercaptide bridges (Pd…Pd 2.95–3.23 Å, Pd…Pd angles 87.15°–92.85°). In cluster II, the Pd atoms form a planar six-membered cycle with Pd···Pd distances of 3.09–3.14 Å, the PdPdPd angles being 118.95°–120.80°. The Pd atoms are linked in pairs by two mercaptide bridges. The formation of clusters I and II in solution is proved by IR spectroscopy and calorimetry. Analogous clusters are formed in solution upon the reaction of palladium(II) diacetate with thiophenol.  相似文献   

15.
The structure of ruthenium(III) dipivaloylmethanate is determined by single crystal X-ray diffraction at temperature of 150 K. The crystallographic data for C33H57O6Ru are as follows: a = 9.6119(11) Å, b = 17.4603(19) Å, c = 21.519(2) Å, β = 95.187(2)°, C2/c space group, V = 3596.7(7) Å3, Z = 4, dcalc = = 1.202 g/cm3, R = 0.0642. The structure is molecular, the metal atom coordinates six oxygen atoms of three ligands of β-diketone. The Ru–O distances are in the range of 1.99 Å to2.03 Å. The complexes have a distorted single layer hexagonal packing with the Ru…Ru distances being 9.84 Å within the layer, and 10.93 Å between the layers.  相似文献   

16.
Sodium hexamolybdocobaltate(III) Na3[CoMo6O18(OH)6] · 8H2O (I) and sodium hexamolybdochromate Na3[CrMo6O18(OH)6] · 8H2O (II) were synthesized and studied by mass spectrometry, thermogravimetry, powder X-ray diffraction, and IR spectroscopy. The crystals are monoclinic. For compound a = 10.31 Å, b = 10.31 Å, c = 17.55 Å, β = 100.93°, V = 1834.77 Å3, ρcalcd = 3.04 g/cm3, Z = 3; for compound II: a = 10.33 Å, b = 10.33 Å, c = 17.59 Å, β = 100.98°, V = 1835.09 Å3, ρcalcd = 3.01 g/cm3, Z = 3.  相似文献   

17.
The structure of a mixed-ligand complex tris-(dipivaloylmethanato)(ethylendiamine)yttrium(III) [Y(en)(dpm)3] is studied at 150(2) K by single crystal XRD. The crystallographic data for C35H65N2O6Y are as follows: space group P21/c, a = 10.3771(3) Å, b = 26.3566(8) Å, c = 14.8412(4) Å, β = 100.385(2)°, V = 3992.6(2) Å3, Z = 4. The structure is molecular. The coordination environment of yttrium atoms is square antiprismatic; the Y–О distances are 2.2597(13)-2.3760(12) Å and Y–N distances are 2.5381(16) Å and 2.5499(17) Å.  相似文献   

18.
A solvate [Cu(CF3COCHCOCH3)2(CH3COCH3)] has been synthesized and characterized for the first time. According to X-ray structural data (diffractometer X8 APEX BRUKER, radiation MoK α, T = 150 K), it crystallizes in the monoclinic crystal system, space group P21/c, a = 8.9940(4) Å, b = 22.3966(11) Å, c = 8.1884(3) Å, β = 92.705(2)°, V = 1647.59(12) Å3, Z = 4, d calc = 1.725 g/cm3, final R = 0.0272. The structure is molecular. In the equatorial plane the atom Cu(II) is surrounded with four oxygen atoms of two chelating ligands (CF3COCHCOCH3)?; Cu-O distances 1.927–1.937 Å, O-Cu-O angles 86.18–93.30° and 170.18–175.67°. Square coordination of Cu is complemented to the square-pyramidal one by the oxygen atom of an acetone molecule behaving as an axial ligand; Cu-Oacetone 2.342 Å, O-Cu-Oacetone 89.66–100.11°. In the studied compound disorder of one of the chelate ligands implies the co-existance of the molecules in the cis- and trans-configuration in the crystal under ratio 54.6:45.4. In air the solvate rapidly degrades losing acetone, while in a sealed vessel melts around 313 K. Temperature dependence of equilibrium vapor pressure of acetone over the complex was measured with the static spoon gauge technique, thermodynamic characteristics of its dissociation process being derived: [Cu(CF3COCHCOCH3)2(CH3COCH3)]s = [Cu(CF3COCHCOCH3)2]s + CH3COCH3g, ΔH av 0 = 49.6(3) kJ/mol, ΔS av 0 = 152(1) J/(mol K), ΔG av 0 = 4.30(2) kJ/mol.  相似文献   

19.
The crystal structure of dichlorobis(dimethylsulfoxide-O)copper(II), [CuCl2(DMSO)2] (I), previously determined by Willett and Chang, is reinvestigated. It crystallizes in the orthorhombic system with the space group Pnma (N°62), Z = 4, and unit cell parameters a = 8.053(1) Å, b = 11.642(5) Å, c = 11.347(3) Å. Our structure determination is of a significantly higher precision in terms of bond lengths, angles, and R factors (e.g., Cu1–O1 = 1.9737(24) Å, O1–Cu1–O1i = 173.08(13)° (symmetry code: I x, 1/2–y, z) and R(F 2) = 0.046 compared to 1.955(4) Å, 173.0(3)° and R(F) = 0.075). In contrast to the previous investigation, all H atoms are placed at calculated positions. In the title molecule, the CuII atom is five coordinated in a distorted square pyramidal geometry. Thus, as reported previously, it can be shown that the crystal structure consists of [CuCl2(DMSO)2] molecules which, by virtue of long Cu–Cl interactions, are tied together to form chains parallel to the [100] direction. The density functional theory (DFT) optimized structure at the B3LYP/6-311++G(2d,2p) level is compared with the experimentally determined molecular structure. The HOMO-LUMO energy gap and other related molecular properties are also calculated. Comprehensive experimental and theoretical structural studies on the studied complex are carried out by FT-IR and UV-visible spectroscopies.  相似文献   

20.
Two volatile hafnium(IV) complexes with acetylacetone and trifluoroacetylacetone (HL) have been prepared and their structures have been studied at ?30°C. Crystal data for C20H28HfO8: a = 21.5493(4) Å, b = 8.36720(10) Å, c = 13.9905(3) Å; β = 116.5550(10)°, space group C2/c, Z = 4, d calc = 1.692 g/cm3, R = 0.015. Crystal data for C20H16F12HfO8: a = 8.1039(12) Å, b = 11.4499(14) Å, c = 15.790(2) Å; α = 99.341(4)°, β = 103.175(4)°, γ = 108.185(4)°, space group P?1, Z = 2, d calc = 2.003 g/cm3, R = 0.074. Both structures are molecular and comprise isolated complex molecules HfL4. The hafnium atom is coordinated with eight oxygen atoms of four β-diketonate ligands, Hf-O distances varying from 2.153 Å to 2.191 Å. The molecules make van der Waals contacts in the structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号