首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Poly(aminophthalimide) (PAP) dimers and trimers have been synthesized by palladium-catalyzed cross-coupling reactions of 3-aminophthalimides with 3-chloro- and 3,6-dichlorophthalimide, respectively. When Pd(OAc)2, XPhos (2-dicyclohexylphosphino-2′,4′,6′-triisopropylbiphenyl), and K3PO4 are used, the C-N bond-forming reactions proceed quantitatively. The structures of those oligomers are examined by experimental and theoretical techniques including NMR, IR, single-crystal X-ray diffraction, and DFT calculations. The strong preference for cisoid structure of the diphthalimidylamine unit bearing a bifurcate hydrogen bonding is disclosed. Therefore, the aminophthalimide backbone is a highly promising candidate for the construction of a dynamically ordered helical structure.  相似文献   

2.
Two novel copper(II) complexes of formulas {[Cu(4-Hmpz)4][Cu(4-Hmpz)23-ox-κ2O1,O2:κO2′:κO1′)(ClO4)2]}n (1) and {[Cu(3,4,5-Htmpz)4]2[Cu(3,4,5-Htmpz)23-ox-κ2O1,O2:κO2′:κO1′)(H2O)(ClO4)]2[Cu2(3,4,5-Htmpz)4(µ-ox-κ2O1,O2:κ2O2′,O1′)]}(ClO4)4·6H2O (2) have been obtained by using 4-methyl-1H-pyrazole (4-Hmpz) and 3,4,5-trimethyl-1H-pyrazole (3,4,5-Htmpz) as terminal ligands and oxalate (ox) as the polyatomic inverse coordination center. The crystal structure of 1 consists of perchlorate counteranions and cationic copper(II) chains with alternating bis(pyrazole)(µ3-κ2O1,O2:κO2′:κO1′-oxalato)copper(II) and tetrakis(pyrazole)copper(II) fragments. The crystal structure of 2 is made up of perchlorate counteranions and cationic centrosymmetric hexanuclear complexes where an inner tetrakis(pyrazole)(µ-κ2O1,O2:κ2O2′,O1′-oxalato)dicopper(II) entity and two outer mononuclear tetrakis(pyrazole)copper(II) units are linked through two mononuclear aquabis(pyrazole)(µ3-κ2O1,O2:κO2′:κO1′-oxalato)copper(II) units. The magnetic properties of 1 and 2 were investigated in the temperature range 2.0–300 K. Very weak intrachain antiferromagnetic interactions between the copper(II) ions through the µ3-ox-κ2O1,O2:κO2′:κO1′ center occur in 1 [J = −0.42(1) cm−1, the spin Hamiltonian being defined as H = −J∑S1,i · S2,i+1], whereas very weak intramolecular ferromagnetic [J = +0.28(2) cm−1] and strong antiferromagnetic [J’ = −348(2) cm−1] couplings coexist in 2 which are mediated by the µ3-ox-κ2O1,O2:κO2′:κO1′ and µ-ox-κ2O1,O2:κ2O2′,O1′ centers, respectively. The variation in the nature and magnitude of the magnetic coupling for this pair of oxalato-centered inverse copper(II) complexes is discussed in the light of their different structural features, and a comparison with related oxalato-centered inverse copper(II)-pyrazole systems from the literature is carried out.  相似文献   

3.
Chloro‐substituted phenothiazines and phenoxazines were successfully derivatized with phenylboronic and styrylboronic acids using Suzuki–Miyaura cross‐coupling reaction catalyzed by Pd(0)/XPhos for the first time in good yields. The protocol employed 4 mol% Pd and 7 mol% XPhos with K3PO4 in acetonitrile at 80°C. The reaction condition is compatible with carbonyl and unprotected N–H groups in substrates. Structural assignments were established by combined spectroscopic (UV, IR, 1H, and 13C NMR), MS, and elemental analytical data.  相似文献   

4.
Reaction of 2,2′-bipyridine (2,2′-bipy) or 1,10-phenantroline (phen) with [Mn(Piv)2(EtOH)]n led to the formation of binuclear complexes [Mn2(Piv)4L2] (L = 2,2′-bipy (1), phen (2); Piv is the anion of pivalic acid). Oxidation of 1 or 2 by air oxygen resulted in the formation of tetranuclear MnII/III complexes [Mn4O2(Piv)6L2] (L = 2,2′-bipy (3), phen (4)). The hexanuclear complex [Mn6(OH)2(Piv)10(pym)4] (5) was formed in the reaction of [Mn(Piv)2(EtOH)]n with pyrimidine (pym), while oxidation of 5 produced the coordination polymer [Mn6O2(Piv)10(pym)2]n (6). Use of pyrazine (pz) instead of pyrimidine led to the 2D-coordination polymer [Mn4(OH)(Piv)72-pz)2]n (7). Interaction of [Mn(Piv)2(EtOH)]n with FeCl3 resulted in the formation of the hexanuclear complex [MnII4FeIII2O2(Piv)10(MeCN)2(HPiv)2] (8). The reactions of [MnFe2O(OAc)6(H2O)3] with 4,4′-bipyridine (4,4′-bipy) or trans-1,2-(4-pyridyl)ethylene (bpe) led to the formation of 1D-polymers [MnFe2O(OAc)6L2]n·2nDMF, where L = 4,4′-bipy (9·2DMF), bpe (10·2DMF) and [MnFe2O(OAc)6(bpe)(DMF)]n·3.5nDMF (11·3.5DMF). All complexes were characterized by single-crystal X-ray diffraction. Desolvation of 11·3.5DMF led to a collapse of the porous crystal lattice that was confirmed by PXRD and N2 sorption measurements, while alcohol adsorption led to porous structure restoration. Weak antiferromagnetic exchange was found in the case of binuclear MnII complexes (JMn-Mn = −1.03 cm−1 for 1 and 2). According to magnetic data analysis (JMn-Mn = −(2.69 ÷ 0.42) cm−1) and DFT calculations (JMn-Mn = −(6.9 ÷ 0.9) cm−1) weak antiferromagnetic coupling between MnII ions also occurred in the tetranuclear {Mn4(OH)(Piv)7} unit of the 2D polymer 7. In contrast, strong antiferromagnetic coupling was found in oxo-bridged trinuclear fragment {MnFe2O(OAc)6} in 11·3.5DMF (JFe-Fe = −57.8 cm−1, JFe-Mn = −20.12 cm−1).  相似文献   

5.
Two light-activated NO donors [RuCl(qn)(Lbpy)(NO)]X with 8-hydroxyquinoline (qn) and 2,2′-bipyridine derivatives (Lbpy) as co-ligands were synthesized (Lbpy1 = 4,4′-dicarboxyl-2,2′-dipyridine, X = Cl and Lbpy2 = 4,4′-dimethoxycarbonyl-2,2′-dipyridine, X = NO3), and characterized using ultraviolet–visible (UV-vis) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (1H NMR), elemental analysis and electrospray ionization mass spectrometry (ESI-MS) spectra. The [RuCl(qn)(Lbpy2)(NO)]NO3 complex was crystallized and exhibited distorted octahedral geometry, in which the Ru–N(O) bond length was 1.752(6) Å and the Ru–N–O angle was 177.6(6)°. Time-resolved FT-IR and electron paramagnetic resonance (EPR) spectra were used to confirm the photoactivated NO release of the complexes. The binding constant (Kb) of two complexes with human serum albumin (HSA) and DNA were quantitatively evaluated using fluorescence spectroscopy, Ru-Lbpy1 (Kb~106 with HSA and ~104 with DNA) had higher affinity than Ru-Lbpy2. The interactions between the complexes and HSA were investigated using matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) and EPR spectra. HSA can be used as a carrier to facilitate the release of NO from the complexes upon photoirradiation. The confocal imaging of photo-induced NO release in living cells was successfully observed with a fluorescent NO probe. Moreover, the photocleavage of pBR322 DNA for the complexes and the effect of different Lbpy substituted groups in the complexes on their reactivity were analyzed.  相似文献   

6.
A series of 2-aminobiphenyl palladacycles supported by dialkylterphenyl phosphines, PR2Ar′ (R=Me, Et, iPr, Cyp (cyclopentyl), Ar′=ArDipp2, ArXyl2f, Dipp (2,6-C6H3-(2,6-C6H3-(CHMe2)2)2), Xyl=xylyl) have been prepared and structurally characterized. Neutral palladacycles were obtained with less bulky terphenyl phosphines (i.e., Me and Et substituents) whereas the largest phosphines provided cationic palladacycles in which the phosphines adopted a bidentate hemilabile k1-P,η1-Carene coordination mode. The influence of the ligand structure on the catalytic performance of these Pd precatalysts was evaluated in aryl amination reactions. Cationic complexes bearing the phosphines PiPr2ArXyl2 and PCyp2ArXyl2 were the most active of the series. These precatalysts have demonstrated a high versatility and efficiency in the coupling of a variety of nitrogen nucleophiles, including secondary amines, alkyl amines, anilines, and indoles, with electronically deactivated and ortho-substituted aryl chlorides at low catalyst loadings (0.25–0.75 mol % Pd) and without excess ligand.  相似文献   

7.
By reacting [Pd( )(μ-Cl)]2 with AgClO4 in NCMe, the corresponding cationic complexes [Pd( )(NCMe)2]ClO4 ( = phenylazophenyl-C2,N1; dimethylbenzylamine-C2,N; 8-methylquinoline-C8,N) can be obtained. Solutions containing the cations [Pd( )(S)2]+ are obtained when the reaction is carried out in tetrahydrofuran or acetone (S). The treatment of these solutions with bidentate ligands (L—L) (Ph2PCH2PPh2,Ph2PNHPPh2 or Ph2PCH2PPh2CHC(O)Ph) gives the mononuclear [Pd( )(L3l)]ClO4 complexes, with L3l acting as a chelate ligand. On the other hand [Pd( (μ-Cl)]2 reacts with L3l (Ph2PCH2PPh2, Ph2PNHPPh2) yielding [Pd( )Cl(L3l)] with L3l acting as monodentate. The reactions between [Pd( )(NCMe)2]ClO4 and 2,2′-bipyrimidyl give rise to the formation of the mononuclear [Pd( ) (bipym)]ClO4 or binuclear [Pd2( )2(μ-bipym)](ClO4)2, [( )Pd(μ-bipym)Pd( )](ClO4)2 derivatives. Finally [Pd( )Cldppm] (dppm = Ph2PCH2PPh2) react with NaH producing the neutral complexes [Pd( )(ddppm)] (ddppm = Ph2PCHPPh2) which by reaction with HCl lead again to the starting materials [Pd( )Cl(dppm)].  相似文献   

8.
The first families of alkaline-earth stannylides [Ae(SnPh3)2·(thf)x] (Ae = Ca, x = 3, 1; Sr, x = 3, 2; Ba, x = 4, 3) and [Ae{Sn(SiMe3)3}2·(thf)x] (Ae = Ca, x = 4, 4; Sr, x = 4, 5; Ba, x = 4, 6), where Ae is a large alkaline earth with direct Ae–Sn bonds, are presented. All complexes have been characterised by high-resolution solution NMR spectroscopy, including 119Sn NMR, and by X-ray diffraction crystallography. The molecular structures of [Ca(SnPh3)2·(thf)4] (1′), [Sr(SnPh3)2·(thf)4] (2′), [Ba(SnPh3)2·(thf)5] (3′), 4, 5 and [Ba{Sn(SiMe3)3}2·(thf)5] (6′), most of which crystallised as higher thf solvates than their parents 1–6, were established by XRD analysis; the experimentally determined Sn–Ae–Sn′ angles lie in the range 158.10(3)–179.33(4)°. In a given series, the 119Sn NMR chemical shifts are slightly deshielded upon descending group 2 from Ca to Ba, while the silyl-substituted stannyls are much more shielded than the phenyl ones (δ119Sn/ppm: 1′, −133.4; 2′, −123.6; 3′, −95.5; 4, −856.8; 5, −848.2; 6′, −792.7). The bonding and electronic properties of these complexes were also analysed by DFT calculations. The combined spectroscopic, crystallographic and computational analysis of these complexes provide some insight into the main features of these unique families of homoleptic complexes. A comprehensive DFT study (Wiberg bond index, QTAIM and energy decomposition analysis) points at a primarily ionic Ae–Sn bonding, with a small covalent contribution, in these series of complexes; the Sn–Ae–Sn′ angle is associated with a flat energy potential surface around its minimum, consistent with the broad range of values determined by experimental and computational methods.

The complete series of heterobimetallic alkaline-earth distannyls [Ae{SnR3}2·(thf)x] (Ae = Ca, Sr, Ba) have been prepared for R = Ph and SiMe3, and their bonding and electronic properties have been comprehensively investigated.  相似文献   

9.
A new biaryl phosphine-containing ligand from an active palladium catalyst for ppm level Suzuki–Miyaura couplings, enabled by an aqueous micellar reaction medium. A wide array of functionalized substrates including aryl/heteroaryl bromides are amenable, as are, notably, chlorides. The catalytic system is both general and highly effective at low palladium loadings (1000–2500 ppm or 0.10–0.25 mol%). Density functional theory calculations suggest that greater steric congestion in N2Phos induces increased steric crowding around the Pd center, helping to destabilize the 2 : 1 ligand–Pd(0) complex more for N2Phos than for EvanPhos (and less bulky ligands), and thereby favoring formation of the 1 : 1 ligand–Pdo complex that is more reactive in oxidative addition to aryl chlorides.

A new, biaryl phosphine-containing ligand, N2Phos, forms a 1 : 1 complex with Pd resulting in an active catalyst at the ppm level for Suzuki–Miyaura couplings in water, enabled by an aqueous micellar medium. Notably, aryl chlorides are shown to be amenable substrates.  相似文献   

10.
A novel Zn(II) metal-organic framework [Zn4O(C30H12F4O4S8)3]n, namely ZnBPD-4F4TS, has been constructed from a fluoro- and thiophenethio-functionalized ligand 2,2′,5,5′-tetrafluoro-3,3′,6,6′-tetrakis(2-thiophenethio)-4,4′-biphenyl dicarboxylic acid (H2BPD-4F4TS). ZnBPD-4F4TS shows a broad green emission around 520 nm in solid state luminescence, with a Commission International De L’Eclairage (CIE) coordinate at x = 0.264, y = 0.403. Since d10-configured Zn(II) is electrochemically inert, its photoluminescence is likely ascribed to ligand-based luminescence which originates from the well-conjugated system of phenyl and thiophenethio moieties. Its luminescent intensities diminish to different extents when exposed to various metal ions, indicating its potential as an optical sensor for detecting metal ion species. Furthermore, ZnBPD-4F4TS and its NH4Br-loaded composite, NH4Br@ZnBPD-4F4TS, were used for proton conduction measurements in different relative humidity (RH) levels and temperatures. Original ZnBPD-4F4TS shows a low proton conductivity of 9.47 × 10−10 S cm−1 while NH4Br@ZnBPD-4F4TS shows a more than 25,000-fold enhanced value of 2.38 × 105 S cm−1 at 40 °C and 90% RH. Both of the proton transport processes in ZnBPD-4F4TS and NH4Br@ZnBPD-4F4TS belong to the Grotthuss mechanism with Ea = 0.40 and 0.32 eV, respectively.  相似文献   

11.
The carbon-carbon cross-coupling of phenyl s-tetrazine (Tz) units at their ortho-phenyl positions allows the formation of constrained bis(tetrazines) with original tweezer structures. In these compounds, the face-to-face positioning of the central tetrazine cores is reinforced by π-stacking of the electron-poor nitrogen-containing heteroaromatic moieties. The resulting tetra-aromatic structure can be used as a weak coordinating ligand with cationic silver. This coordination generates a set of bis(tetrazine)-silver(I) coordination complexes tolerating a large variety of counter anions of various geometries, namely, PF6, BF4, SbF6, ClO4, NTf2, and OTf. These compounds were characterized in the solid state by single-crystal X-ray diffraction (XRD) and diffuse reflectance spectroscopy, and in solution by 1H-NMR, mass spectrometry, electroanalysis, and UV-visible absorption spectrophotometry. The X-ray crystal structure of complexes {[Ag(3)][PF6]} (4) and {[Ag(3)][SbF6]} (6), where 3 is 3,3′-[(1,1′-biphenyl)-2,2′-diyl]-6,6′-bis(phenyl)-1,2,4,5-tetrazine, revealed the formation of 1D polymeric chains, characterized by an evolution to a large opening of the original tweezer and a coordination of silver(I) via two chelating nitrogen atom and some C=C π-interactions. Electrochemical and UV spectroscopic properties of the original tweezer and of the corresponding silver complexes are reported and compared. 1H-NMR titrations with AgNTf2 allowed the determination of the stoichiometry and apparent stability of two solution species, namely [Ag(3)]+ and [Ag(3)2]2+, that formed in CDCl3/CD3OD 2:1 v/v mixtures.  相似文献   

12.
Three new 3D metal-organic porous frameworks based on Co(II) and 2,2′-bithiophen-5,5′-dicarboxylate (btdc2−) [Co3(btdc)3(bpy)2]·4DMF, 1; [Co3(btdc)3(pz)(dmf)2]·4DMF·1.5H2O, 2; [Co3(btdc)3(dmf)4]∙2DMF∙2H2O, 3 (bpy = 2,2′-bipyridyl, pz = pyrazine, dmf = N,N-dimethylformamide) were synthesized and structurally characterized. All compounds share the same trinuclear carboxylate building units {Co3(RCOO)6}, connected either by btdc2– ligands (1, 3) or by both btdc2– and pz bridging ligands (2). The permanent porosity of 1 was confirmed by N2, O2, CO, CO2, CH4 adsorption measurements at various temperatures (77 K, 273 K, 298 K), resulted in BET surface area 667 m2⋅g−1 and promising gas separation performance with selectivity factors up to 35.7 for CO2/N2, 45.4 for CO2/O2, 20.8 for CO2/CO, and 4.8 for CO2/CH4. The molar magnetic susceptibilities χp(T) were measured for 1 and 2 in the temperature range 1.77–330 K at magnetic fields up to 10 kOe. The room-temperature values of the effective magnetic moments for compounds 1 and 2 are μeff (300 K) ≈ 4.93 μB. The obtained results confirm the mainly paramagnetic nature of both compounds with some antiferromagnetic interactions at low-temperatures T < 20 K in 2 between the Co(II) cations separated by short pz linkers. Similar conclusions were also derived from the field-depending magnetization data of 1 and 2.  相似文献   

13.
Highly convenient copper-free and amine-free Sonogashira coupling of aryl bromides and iodides with terminal acetylenes under amenable conditions in air and in a mixed aqueous medium are reported using several new, user friendly and robust palladium precatalysts (15) of N/O-functionalized N-heterocyclic carbenes (NHCs). In particular, the precatalysts, 1 and 2, were synthesized from the imidazolium chloride salts by the treatment with PdCl2 in pyridine in presence of K2CO3 as a base while the precatalysts, 35, were synthesized from the respective silver complexes by the treatment with (COD)PdCl2. The DFT studies carried out on the 15 complexes suggest the presence of strong NHC–Pd σ-interactions arising out of deeply buried NHC–Pd σ-bonding molecular orbitals (MOs) that account for the inert nature of the metal–carbene bonds and also provide insights into the exceptional stability of these precatalysts.  相似文献   

14.
We report the first examples of highly luminescent di-coordinated Pd(0) complexes. Five complexes of the form [Pd(L)(L′)] were synthesized, where L = IPr, SIPr or IPr* NHC ligands and L′ = PCy3, or IPr and SIPr NHC ligands. The photophysical properties of these complexes were determined in degassed toluene solution and in the solid state and contrasted to the poorly luminescent reference complex [Pd(IPr)(PPh3)]. Organic light-emitting diodes were successfully fabricated but attained external quantum efficiencies of between 0.3 and 0.7%.  相似文献   

15.
Doubly base-stabilised cyano- and isothiocyanatoborylenes of the form LL′BY (L = CAAC = cyclic alkyl(amino)carbene; L′ = NHC = N-heterocyclic carbene; Y = CN, NCS) coordinate to group 6 carbonyl complexes via the terminal donor of the pseudohalide substituent and undergo facile and fully reversible one-electron oxidation to the corresponding boryl radical cations [LL′BY]˙+. Furthermore, calculations show that the borylenes have very similar proton affinities, both to each other and to NHC superbases. However, while the protonation of LL′B(CN) with PhSH yielding [LL′BH(CN)+][PhS] is fully reversible, that of LL′B(NCS) is rendered irreversible by a subsequent B-to-CCAAC hydrogen shift and nucleophilic attack of PhS at boron.

Borylenes of the form (CAAC)(NHC)BY (Y = CN, NCS; CAAC = cyclic alkyl(amino)carbene; NHC = N-heterocyclic carbene) coordinate to group 6 carbonyl complexes via Y, and show reversible boron-centered Brønsted basicity and one-electron oxidation.  相似文献   

16.
An alkylamide-substituted (−NHCOC10H21) hydrogen-bonded dibenzo[18]crown-6 derivative (1) was prepared to stabilise the ionic channel structure in a discotic hexagonal columnar (Colh) liquid crystal. The introduction of simple M+X salts such as Na+PF6 and K+I into the ionic channel of 1 enhanced the ionic conductivity of the Colh phase of the M+·(1)·X salts, with the highest ionic conductivity reaching ∼10−6 S cm−1 for K+·(1)·I and Na+·(1)·PF6 at 460 K, which was approximately 5 orders of magnitude higher than that of 1. The introduction of non-ferroelectric 1 into the ferroelectric N,N′,N′′-tri(tetradecyl)-1,3,5-benzenetricarboxamide (3BC) elicited a ferroelectric response from the mixed Colh phase of (3BC)x(1)1−x with x = 0.9 and 0.8. The further doping of M+X into the ferroelectric Colh phase of (3BC)0.9(1)0.1 enhanced the ferroelectric polarisation assisted by ion displacement in the half-filled ionic channel for the vacant dibenzo[18]crown-6 of (3BC)0.9[(M+)0.5·(1)·(X)0.5]0.1.

An alkylamide-substituted (−NHCOC10H21) hydrogen-bonded dibenzo[18]crown-6 derivative (1) was prepared to stabilise the ionic channel structure in a discotic hexagonal columnar (Colh) liquid crystal.  相似文献   

17.
A large-scale, cost-effective, and environmentally clean synthesis of high purity 2-cyanoethyl-N,N,N′,N′-tetraisopropylphosphorodiamidite (Phos reagent) has been accomplished on a commercial scale. Treatment of PCl3 with diisopropylamine followed by 3-hydroxylpropionitrile furnished the Phos reagent in excellent yield. The 31P NMR of the Phos reagent prepared at large-scale show consistent purities >99% when several key factors are controlled. These controlling factors include sourcing high purity key raw materials, identification and elimination of critical impurities, stability and storage of Phos reagent.  相似文献   

18.
The reactivity of the tetrahedral dipnictogen complexes [{CpMo(CO)2}2(μ,η22-EE′)] (E, E′ = P, As, Sb, Bi; “Mo2EE′”) towards different one-electron oxidation agents is reported. Oxidation with [Thia][TEF] (Thia+ = C12H8S2+; TEF = Al{OC(CF3)3}4) leads to the selective formation of the radical monocations [Mo2EE′]˙+, which immediately dimerize to the unprecedented dicationic E2E′2 ligand complexes [{CpMo(CO)2}442222-E′EEE′)]2+via E–E bond formation. Single crystal X-ray diffraction revealed that, in the case of Mo2PAs and Mo2PSb, P–P bond formation occurs yielding zigzag E2P2 (E = As (1), Sb (2)) chains, whereas Mo2SbBi forms a Sb2Bi2 (5) cage, Mo2AsSb an unprecedented As2Sb2 unit representing an intermediate stage between a chain- and a cage-type structure, and Mo2AsBi a novel planar As2Bi2 (4a) cycle. Therefore, 1–5 bear the first substituent-free, dicationic hetero-E4 ligands, stabilized by transition metal fragments. Furthermore, in the case of Mo2AsSb, the exchange of the counterion causes changes in the molecular structure yielding an unusual, cyclic As2Sb2 ligand. The experimental results are corroborated by DFT calculations.

Unique dicationic hetero-tetrapnictogen E2E′2 (E ≠ E′ = P, As, Sb, Bi) chains and cages are obtained via oxidation of the tetrahedranes [{CpMo(CO)2}2(μ,η22-EE′)]. Exchange of the counterion causes an unusual cyclization of the As2Sb2 ligand.  相似文献   

19.
Understanding the nature of the intermediate species operating within a palladium catalytic cycle is crucial for developing efficient cross-coupling reactions. Even though the XPhos/Pd(OAc)2 catalytic system has found numerous applications, the nature of the active catalytic species remains elusive. A Pd0 complex ligated to XPhos has been detected and characterized in situ for the first time using cyclic voltammetry and NMR techniques. In the presence of XPhos, Pd(OAc)2 initially associates with the ligand to form a complex in solution, which has been characterized as PdII(OAc)2(XPhos). This PdII center is then reduced to the Pd0(XPhos)2 species by an intramolecular process. This study also sheds light on the formation of PdI–PdI dimers. Finally, a kinetic study probes a dissociative mechanism for the oxidative addition with aryl halides involving Pd0(XPhos) as the reactive species in equilibrium with the unreactive Pd0(XPhos)2. Remarkably, the reportedly poorly reactive PhCl reacts at room temperature in the oxidative addition, which confirms the crucial role of the XPhos ligand in the activation of aryl chlorides.  相似文献   

20.
A series of hybrid uranocenes consisting of uranium(iv) sandwiched between cyclobutadienyl (Cb) and cyclo-octatetraenyl (COT) ligands has been synthesized, structurally characterized and studied computationally. The dimetallic species [(η4-Cb′′′′)(η8-COT)U(μ:η28-COT)U(THF)(η4-Cb′′′′)] (1) forms concomitantly with, and can be separated from, monometallic [(η4-Cb′′′′)U(THF)(η8-COT)] (2) (Cb′′′′ = 1,2,3,4-tetrakis(trimethylsilyl)cyclobutadienyl, COT = cyclo-octatetraenyl). In toluene solution at room temperature, 1 dissociates into 2 and the unsolvated uranocene [(η4-Cb′′′′)U(η8-COT)] (3). By applying a high vacuum, both 1 and 2 can be converted directly into 3. Using bulky silyl substituents on the COT ligand allowed isolation of base-free [(η4-Cb′′′′)U{η8-1,4-(iPr3Si)2C8H6}] (4), with compounds 3 and 4 being new members of the bis(annulene) family of actinocenes and the first to contain a cyclobutadienyl ligand. Computational studies show that the bonding in the hybrid uranocenes 3 and 4 has non-negligible covalency. New insight into actinocene bonding is provided by the complementary interactions of the different ligands with uranium, whereby the 6d orbitals interact most strongly with the cyclobutadienyl ligand and the 5f orbitals do so with the COT ligands. The redox-neutral activation of diethyl ether by [(η4-Cb′′′′)U(η8-C8H8)] is also described and represents a uranium-cyclobutadienyl cooperative process, potentially forming the basis of further small-molecule activation chemistry.

The synthesis, structure and bonding in a series of hybrid uranocenes consisting of cyclobutadienyl and cyclo-octatetraenyl ligands is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号