首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The nonlinear development of disturbances of the traveling wave type in the boundary layer on a flat plate is examined. The investigation is restricted to two-dimensional disturbances periodic with respect to the longitudinal space coordinate and evolving in time. Attention is concentrated on the interactions of two waves of finite amplitude with multiple wave numbers. The problem is solved by numerically integrating the Navier-Stokes equations for an incompressible fluid. The pseudospectral method used in the calculations is an extension to the multidimensional case of a method previously developed by the authors [1, 2] in connection with the study of nonlinear wave processes in one-dimensional systems. Its use makes it possible to obtain reliable results even at very large amplitudes of the velocity perturbations (up to 20% of the free-stream velocity). The time dependence of the amplitudes of the disturbances and their phase velocities is determined. It is shown that for a fairly large amplitude of the harmonic and a particular choice of wave number and Reynolds number the interacting waves are synchronized. In this case the amplitude of the subharmonic grows strongly and quickly reaches a value comparable with that for the harmonic. As distinct from the resonance effects reported in [3, 4], which are typical only of the three-dimensional problem, the effect described is essentially two-dimensional.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 37–44, March–April, 1990.  相似文献   

2.
The problem of the evolution of the surface of a jet up to the stage at which it breaks up into droplets is solved numerically for two initial wave disturbances. The wave number of one of these coincides with the wave number of the disturbance that grows most strongly according to the linear theory, while the wave number of the other is varied. The effect of the wave numbers and the amplitude ratio of the initial disturbances on the breakup time and the appearance of nonuniformity is investigated.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.2, pp. 12–17, March–April, 1993.  相似文献   

3.
A theoretical analysis is made of the interaction of wave disturbances of small finite amplitude in a boundary layer in the case when the velocity distribution contains a periodic component that oscillates in time in accordance with a harmonic law. It is shown that it is in principle possible for there to be a four-wave synchronous (resonance) interaction in a cubic nonlinearity; equations are obtained for the amplitudes. Calculations made to test the effectiveness of the resonance phenomena have shown that the coupling coefficients are not sufficiently large for the superimposed oscillations to change significantly the nature of the interaction of the waves.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 154–158, September–October, 1980.We thank A. G. Volodin for assistance in the calculations.  相似文献   

4.
The three-frequency resonance of Tolman-Schlichting waves, one of which propagates along the stream while the other two propagate at adjacent angles to it, is investigated as a function of the spectrum and initial intensity in incompressible flows of the boundary-layer type within the framework of a weakly nonlinear theory. In the parallel-flow approximation such an interaction leads to the formation of unstable self-oscillations. The spatial evolution of the associated disturbances is studied with allowance for the self-similar deformation of the velocity profile of the main flow. It is shown that such development can lead to a sharp amplification of the oscillations, primarily of those propagating at an angle to the flow. The role of the effects under consideration in the transitional process and the connection with experimental data are discussed. As experiments [1, 2] show, in the process of a transition from a laminar boundary layer to a turbulent region, well described by the linear theory of hydrodynamic stability, there first comes a section of the excitation of harmonics of a Tolman-Schlichting wave, the appearance of three-dimensional structures, and a rapid growth in the intensity of low-frequency oscillations. There is no doubt that in this section the phenomena are dependent on the nonlinear character of the development with disturbances. The resonance interaction of wave triads can play an important role in this. For small enough amplitudes such an interaction is described by a first-order theory [3, 4], and in the general case the nonlinear effects associated with them should occur sooner than others. The importance of resonance triads for the explanation of the development of three-dimensional structures in a layer and the generation of intense pulsations has already been emphasized in [5, 6]. The clarification of the properties of the evolution of resonantly interacting disturbances therefore is important for an understanding of this transitional process.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 78–84, September–October, 1978.The authors thank V. Ya. Levchenko for a discussion of the work.  相似文献   

5.
Previous experiments into the evolution of small amplitude disturbances to the Blasius boundary layer have shown that modulated waves become nonlinear at lower amplitudes than unmodulated waves. In this paper we propose a mechanism that may account for this behaviour. It involves a wave-envelope steepening scenario analogous to water-wave overturning and shock formation. Larger amplitude parts of a modulated wave travel at a different speed to lower amplitude parts, due to the proposed nonlinear mechanism, leading to an asymmetry between the steepness of decaying and growing sections. These effects occur in the higher order Ginzburg–Landau equation, so this may be a useful model for the process. Results from a windtunnel experiment, and a direct numerical simulation, will be presented and analysed for this effect. Both show a clear progressive asymmetry developing as the amplitude, and hence nonlinearity, are increased. Comparison between the experiment and simulation highlights key differences between two- and three-dimensional nonlinear evolutions.  相似文献   

6.
The effect of a thin elastic floating plate on the three-dimensional internal waves in the near zone of a moving region of constant pressure is studied with reference to a two-layer model of a liquid of finite depth. The dependence of the spatial distributions of the amplitudes of the wave disturbances due to the internal waves at the plateliquid interface and on the surface of density discontinuity on the rate of displacement of the pressure region and the characteristics of the plate is analyzed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 85–91, January–February, 1990.  相似文献   

7.
The collision of two blast waves is analyzed for the case of variable parameters of the gas behind the wave front and wave reflection at a plane, a cylindrical, and a spherical obstacle. The reflection of a blast wave from a nonmoving obstacle is investigated in detail. The problem of the collision of two shock waves with constant parameters behind the front is solved both in the symmetrical case (reflection from a nonmoving wall) and in the case of waves of different amplitudes by a system of algebraic relations for the compression shocks. The reflection of a strong point-source spherical shock wave from a wall has been treated in [1, 2]. The present article examines the initial stage of wave collision for an arbitrary distribution of the parameters behind the front.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 41–48, September–October, 1971.The authors are grateful to V. P. Korobeinikov for a discussion of the results and to V. P. Kolgan for furnishing the numerical solutions.  相似文献   

8.
A rapid increase of energy of fluctuation motion is observed after a severe loss of stability of laminar regimes. This phenomenon does not find explanation in the scope of the linear theory of stability, which, though it predicts an exponential increase of disturbances in the supercritical region, gives quite small values of the increments. The explosionlike turbulence is due to a nonlinear mechanism. The simplest collective interaction of disturbances is illustrated by a set of three harmonic oscillations whose parameters are associated by resonance relations. Such triplets, being an elementary but sufficiently meaningful model of the nonlinear theory of hydrodynamic stability, have become in recent years the object of interesting investigations [1–4]. In [5–7] branching of stationary triplets of small amplitude from laminar regimes was investigated and it was shown that, beginning with certain Reynolds numbers, the triplet can be composed of neutral waves and Tolman-Schlichting waves increasing according to the linear theory. It is shown in the article that a quite rich example in this case is Hartmann flow, where the existence of triplets of disturbances having a different symmetry relative to the axis of the channel is admitted. The evolution of triplets is studied for near-critical values of the parameters in the framework of amplitude equations obtained on the basis of the Galerkin method with the use of eigenfunctions of the linear theory of stability as the basis [8]. Regimes stationary in the mean are calculated in the supercritical region: limiting cycles and strange attractors; in the latter case a spectral analysis is carried out.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 33–39, September–October, 1978.The authors thank M. A. Gol'dshtik and M. I. Rabinovich for discussing the work.  相似文献   

9.
The propagation of linear and nonlinear internal waves along the interface between two weakly conducting media differing in density and electrical conductivity is investigated and the influence of MHD interaction effects on their characteristics is analyzed. It is shown that in this system the waves propagate with dispersion and dissipation, and for harmonic waves of infinitesimal amplitude there exists a range of wave numbers on which propagating modes do not exist. For waves of finite amplitude a nonlinear Schrödinger equation with a dissipative perturbation is obtained and its asymptotic solution is found. It is established that the presence of electrical conductivity and an applied magnetic field leads to a decrease in the amplitude and the frequency of the envelope of the wave train.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 104–108, September–October, 1990.  相似文献   

10.
The linear theory is used to solve the problem of the development of two-dimensional disturbances in the boundary layer of compressible fluid. In contrast to the stability theory of plane-parallel flows, the present paper takes into account the presence in the boundary layer of transverse (at right angles to the flow direction) motions, the dependence of the averaged flow parameters on the longitudinal coordinate, and also the deformation of the amplitude distribution profile of the disturbances as a function of the longitudinal coordinate. The calculations are made for Mach number M = 4.5.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 26–31, March–April, 1980.  相似文献   

11.
The results of mathematical modeling of the evolution of unsteady shock waves in two-phase mixtures of inert gas, vapor and suspended liquid droplets with allowance for dynamic, thermal and mass phase interaction processes are presented. The influence of interphase mass transfer effects (droplet breakdown and evaporation, vapor condensation) on the structure of unsteady shock waves in vapor-gas-droplet mixtures is analyzed. The important influence of phase mass transfer and, in particular, droplet breakdown as a result of surface layer stripping by the gas flow on the distribution of the parameters of the carrier and dispersed components of the mixture behind the shock front is demonstrated. The effect of the principal governing parameters of the two-phase mixture on the unsteady shock wave propagation process is analyzed.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.4, pp. 67–75, July–August, 1992.  相似文献   

12.
The results obtained by the authors in [1] are extended to the case of arbitrary angles of incidence of the external wave. This is not a trivial generalization, since the acoustic scattering undergoes a qualitative change. It is possible to distinguish two excitation channels: the first is connected with the diffraction of the acoustic wave by the spatial inhomogeneity resulting from the displacing action of the boundary layer, and the second with the presence of concentrated acoustic field sources associated with the scattering of the wave at the leading edge. The latter makes the principal contribution to the initial amplitude of the unstable modes when the angles of incidence of the sound are substantially different from zero. At low angles of incidence there is a singularity which can be revealed by introducing narrow intervals in the neighborhood of the limiting values of the wave numbers, where the two excitation channels are approximately equivalent. It is possible to obtain composite expressions for the initial amplitudes of the unstable modes uniformly valid for all angles of incidence of the acoustic wave.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 40–47, January–February, 1992.  相似文献   

13.
Equations are obtained which describe the propagation of long waves of small, but finite amplitude in an ideal weakly conducting liquid and on the basis of these equations the influence of MHD interaction effects on the characteristics of the solitary waves is investigated. The wave equations are derived under less rigorous constraints on the external magnetic field and the MHD interaction parameter than in [1–3]. It is shown that the evolution of the free surface is described by the KdV-Burgers or KdV equations with a dissipative perturbation, and that the propagation velocity of the solitary waves depends on the strength of the external magnetic field.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 177–180, November–December, 1989.  相似文献   

14.
Three-wave interaction between capillary-gravity waves on a uniformly charged free fluid surface is analyzed using second-order analytic calculations. The time evolution of the wave amplitudes in the state of nonlinear resonance is studied. It is shown that the number of three-wave resonances is infinite and their exact locations for waves of finite amplitude depend on the initial conditions.  相似文献   

15.
The evolution of steady-state periodic solutions of the Korteweg-de Vries equation (the socalled cnoidal waves), propagating along the direction of the gravitational force with an arbitrary orientation of the magnetic field, is studied for plasma characterized by Hall dispersion and Joule dissipation, using the magnetohydrodynamic approximation. The wavelength is regarded as much shorter than the characteristic scale of the inhomogeneity. The dependence of the wave amplitude on the distance to the source of the wave is considered for various limiting cases. The behavior of the wave depends on the temperature distribution in the medium. In the particular case of an isothermal atmosphere, the problem is solved analytically for a cold plasma in the absence of dissipation. The amplitude of both fast and slow waves increases when the wave travels upward and diminishes when the wave travels downward. The nonlinearity of the wave (i.e., the parameter characterizing the deviation of the wave from sinusoidal form) diminishes in the case of fast magnetoacoustic waves when the wave travels upward and increases when the wave travels downward. The situation is reversed for slow magnetoacoustic waves.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 139–144, September–October, 1976.The author is grateful to V. B. Baranov for constant interest in the work and valuable comments.  相似文献   

16.
Unsteady wave processes in vapor-liquid media containing bubbles are investigated taking into account the unsteady interphase heat and mass transfer. A single velocity model of the medium with two pressures is used for this, which takes into account the radial inertia of the liquid with a change in volume of the medium and the temperature distribution in it [1]. The system of original differential equations of the model is converted into a form suitable for carrying out numerical integration. The basic principles governing the evolution of unsteady waves are studied. The determining influence of the interphase heat and mass transfer on the wave behavior is demonstrated. It is found that the time and distance at which the waves reach a steady configuration in a vapor-liquid bubble medium are considerably less than the correponding characteristics in a gas-liquid medium. The results of the calculation are compared with experimental data. The propagation of acoustic disturbances in a liquid with vapor bubbles was studied theoretically in [2]. The evolution of waves of small but finite amplitude propagating in one direction in a bubbling vapor-liquid medium is investigated in [3, 4] on the basis of the generalization of the Burgers-Korteweg-de Vries equation obtained by the authors. An experimental investigation of shock waves in such a medium is reported in [5, 6], and the structure of steady shock waves is discussed [7].Translated from Izvestiya Akademii Nauk SSSR, Hekhanika Zhidkosti i Gaza, No. 5, pp. 117–125, September–October, 1984.  相似文献   

17.
In this paper, the evolution of a characteristic shock in a dusty gas is investigated and its interaction with a weak discontinuity wave is studied. The transport equation for the amplitude of the weak discontinuity wave, which is of Bernoulli type, is obtained. The amplitudes of the reflected and transmitted waves after interaction of the weak discontinuity with the characteristic shock are evaluated by using the results of the general theory of wave interaction.   相似文献   

18.
The amplitudes of the stationary internal waves are estimated for exact resonance. The dependence of the amplitudes on the densities and depths of the layers is investigated. It is shown that dispersion considerably reduces the amplitude of the stationary waves. In this case higher harmonics appear in the solution.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 90–98, March–April. 1990.  相似文献   

19.
V. V. Sobolev 《Fluid Dynamics》1974,9(6):1025-1028
The evolution of sound waves in a gas—liquid medium with an inhomogeneous distribution of the sound speed is considered in this paper on the basis of a nonlinear parabolic equation for the amplitude of the sound wave envelope. It is assumed that the nonlinearity due to the gas inclusions is much greater than the customary hydrodynamic nonlinearity. The influence of the inhomogeneity on the self-focusing of the sound is studied.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 177–180, November–December, 1974.The author is grateful to I. R. Shreiber for discussion.  相似文献   

20.
The data of systematic calculations of the development of instability in a wake under the influence of given external disturbances are presented. The evolution (linear and nonlinear) of a disturbance of given frequencyf of each mode and, moreover, the intermodal interaction are studied. Considerable attention is given to the investigation of the instability of the wake under the influence of a pair of disturbances: fundamental and subharmonic. In the calculations the amplitudes and phases of the disturbances were varied over a broad range.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 26–32, January–February, 1992.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号