首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 688 毫秒
1.
2.
In this work we present a novel approach for the identification of plant metabolites using ultrahigh performance liquid chromatography coupled to accurate mass time-of-flight mass spectrometry. The workflow involves developing an in-house compound database consisting of exact masses of previously identified as well as putative compounds. The database is used to screen accurate mass spectrometry (MS) data to identify possible compound matches. Subsequent tandem MS data is acquired for possible matches and used for structural elucidation. The methodology is applied to profile monoterpene glycosides in Vitis vinifera cv. Muscat of Alexandria grape berries over three developmental stages. Monoterpenes are a subclass of terpenes, the largest class of plant secondary metabolites, and are found in two major forms in the plant, “bound” to one or more sugar moieties or “free” of said sugar moieties. In the free form, monoterpenes are noted for their fragrance and play important roles in plant defense and as attractants for pollinators. However, glycoconjugation renders these compounds odorless, and it is this form that the plant uses for monoterpene storage. In order to gain insight into monoterpene biochemistry and their fate in the plant an analysis of intact glycosides is essential. Eighteen monoterpene glycosides were identified including a monoterpene trisaccharide glycoside, which is tentatively identified here for this first time in any plant. Additionally, while previous studies have identified monoterpene malonylated glucosides in other grapevine tissue, we tentatively identify them for the first time in grape berries. This analytical approach can be readily applied to other plants and the workflow approach can also be used for other classes of compounds. This approach, in general, provides researchers with data to support the identification of putative compounds, which is especially useful when no standard is available.  相似文献   

3.
In Cannabis sativa, Δ9‐Tetrahydrocannabinolic acid‐A (Δ9‐THCA‐A) is the non‐psychoactive precursor of Δ9‐tetrahydrocannabinol (Δ9‐THC). In fresh plant material, about 90% of the total Δ9‐THC is available as Δ9‐THCA‐A. When heated (smoked or baked), Δ9‐THCA‐A is only partially converted to Δ9‐THC and therefore, Δ9‐THCA‐A can be detected in serum and urine of cannabis consumers. The aim of the presented study was to identify the metabolites of Δ9‐THCA‐A and to examine particularly whether oral intake of Δ9‐THCA‐A leads to in vivo formation of Δ9‐THC in a rat model. After oral application of pure Δ9‐THCA‐A to rats (15 mg/kg body mass), urine samples were collected and metabolites were isolated and identified by liquid chromatography‐mass spectrometry (LC‐MS), liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) and high resolution LC‐MS using time of flight‐mass spectrometry (TOF‐MS) for accurate mass measurement. For detection of Δ9‐THC and its metabolites, urine extracts were analyzed by gas chromatography‐mass spectrometry (GC‐MS). The identified metabolites show that Δ9‐THCA‐A undergoes a hydroxylation in position 11 to 11‐hydroxy‐Δ9‐tetrahydrocannabinolic acid‐A (11‐OH‐Δ9‐THCA‐A), which is further oxidized via the intermediate aldehyde 11‐oxo‐Δ9‐THCA‐A to 11‐nor‐9‐carboxy‐Δ9‐tetrahydrocannabinolic acid‐A (Δ9‐THCA‐A‐COOH). Glucuronides of the parent compound and both main metabolites were identified in the rat urine as well. Furthermore, Δ9‐THCA‐A undergoes hydroxylation in position 8 to 8‐alpha‐ and 8‐beta‐hydroxy‐Δ9‐tetrahydrocannabinolic acid‐A, respectively, (8α‐Hydroxy‐Δ9‐THCA‐A and 8β‐Hydroxy‐Δ9‐THCA‐A, respectively) followed by dehydration. Both monohydroxylated metabolites were further oxidized to their bishydroxylated forms. Several glucuronidation conjugates of these metabolites were identified. In vivo conversion of Δ9‐THCA‐A to Δ9‐THC was not observed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
The Wen‐Jing decoction, a traditional Chinese medicine formula, has been used as a blood‐activating and stasis‐eliminating drug to treat gynaecological syndromes, such as dysmenorrhea, amenorrhea, and menstrual disorders. However, its pharmacodynamic material basis and mechanism of action have not been thoroughly elucidated to date. The goal of this study was to characterize and identify multiple constituents and metabolites in Wen‐Jing decoction. An ultra high performance liquid chromatography coupled with electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry method was established and validated in the present study for the first time. A total of 101 compounds, including 11 monoterpene glycosides, 19 flavonoids, 49 triterpene saponins, 5 phthalides, 3 phytoecdysones, and 14 others, were unambiguously or tentatively characterized by comparing their retention times and MS data with reference standards or with data reported in the literature. After oral administration of Wen‐Jing decoction, 27 compounds, including nine prototype compounds and 18 metabolites were detected in rat plasma. Thus, the ultra high performance liquid chromatography coupled with electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry method was found to be efficient for in‐depth structural elucidation of chemical compounds in complex matrices of herbal medicines, which will provide useful chemical information for quality control and mechanism‐of‐action research.  相似文献   

5.
High‐performance liquid chromatography coupled with time‐of‐flight mass spectrometry (HPLC‐TOF/MS) and high‐performance liquid chromatography–triple quadrupole mass spectrometry (HPLC‐QQQ/MS/MS) were utilized to clarify the chemical constituents of Mahuang‐Fuzi‐Xixin Decoction. There are 52 compounds, including alkaloids, amino acids and organic acids were identified or tentatively characterized by their characteristic high resolution mass data by HPLC‐QQQ/MS/MS. In the subsequent quantitative analysis, 10 constituents, including methyl ephedrine, aconine, songrine, fuziline, neoline, talatisamine, chasmanine, benzoylmesaconine, benzoylaconine and benzoylhypaconine were simultaneously determined by HPLC‐QQQ/MS/MS with multiple reaction monitoring mode. Satisfactory linearity was achieved with wide linear range and fine determination coefficient (r > 0.9992). The relative standard deviations (RSD) of inter‐ and intra‐day precisions were <3%. This method was also validated by repeatability, stability and recovery with RSD <3% respectively. A highly sensitive and efficient method was established for chemical constituents studying, including identification and quantification of Mahuang‐Fuzi‐Xixin decoction.  相似文献   

6.
Atenolol, nadolol, metoprolol, bisoprolol and betaxolol were simultaneously determined in groundwater samples by large‐volume injection coupled‐column reversed‐phase liquid chromatography with fluorescence detection (LVI‐LC‐LC‐FD) and liquid chromatography‐time‐of‐flight mass spectrometry (LC‐TOF‐MS). The LVI‐LC‐LC‐FD method combines analyte isolation, preconcentration and determination into a single step. Significant reductions in costs for sample pre‐treatment (solvent and solid phases for clean up) and method development times are also achieved. Using LC‐TOF‐MS, accurate mass measurements within 3 ppm error were obtained for all of the β‐blockers studied. Empirical formula information can be obtained by this method, allowing the unequivocal identification of the target compounds in the samples. To increase the sensitivity, a solid‐phase extraction step with Oasis MCX cartridge was carried out yielding recoveries of 79–114% (n=5) with RSD 2–7% for the LC‐TOF‐MS method. SPE gives a high purification of β‐blockers compared with the existing methods. A 100% methanol wash was allowed for these compounds with no loss of analytes. Limit of quantification was 1–7 ng/L for LVI‐LC‐LC‐FD and 0.25–5 ng/L for LC‐TOF‐MS. As a result of selective extraction and effective removal of coextractives, no matrix effect was observed in LVI‐LC‐LC‐FD and LC‐TOF‐MS analyses. The methods were applied to detect and quantify β‐blockers in groundwater samples of Almería (Spain).  相似文献   

7.
A fast high‐performance liquid chromatography (HPLC) method coupled with diode‐array detection (DAD) and electrospray ionization time‐of‐flight mass spectrometry (ESI‐TOFMS) has been developed for rapid separation and sensitive identification of major constituents in Radix Paeoniae Rubra (RPR). The total analysis time on a short column packed with 1.8‐µm porous particles was about 20 min without a loss in resolution, six times faster than the performance of a conventional column analysis (115 min). The MS fragmentation behavior and structural characterization of major compounds in RPR were investigated here for the first time. The targets were rapidly screened from RPR matrix using a narrow mass window of 0.01 Da to restructure extracted ion chromatograms. Accurate mass measurements (less than 5 ppm error) for both the deprotonated molecule and characteristic fragment ions represent reliable identification criteria for these compounds in complex matrices with similar if not even better performance compared with tandem mass spectrometry. A total of 26 components were screened and identified in RPR including 11 monoterpene glycosides, 11 galloyl glucoses and 4 other phenolic compounds. From the point of time savings, resolving power, accurate mass measurement capability and full spectral sensitivity, the established fast HPLC/DAD/TOFMS method turns out to be a highly useful technique to identify constituents in complex herbal medicines. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
An efficient ultra high‐performance liquid chromatography coupled with quadrupole time‐of‐flight mass spectrometry method was developed for separation and profiling of phytochemical constituents of Chinese wild mandarin Mangshanju (Citrus reticulata Blanco). All constituents were well separated within 16 min. Based on retention times, accurate mass, MSE fragments, and/or reference standards as well as databases, a total of 81 compounds were unambiguously identified or tentatively assigned including flavonoid glycosides, acylated flavonoid glycosides, flavones, polymethoxylated flavonoids, and limonoids as well as four other compounds. Among them, 22 polymethoxylated flavones and ten polymethoxylated flavanones/chalcones were identified in Mangshanju, more types than other citrus reported before. A basic procedure for identifying flavonoid‐O‐glycosides and the aglycones including polymethoxylated flavonoids was proposed. In addition, this method was successfully used to analyze another four mandarin germplasms, Cenxi suan ju, Xipi gousi gan, Nanfeng miju, and Or, showing that Mangshanju contained two characteristic compounds distinct from the other four citrus species. This study systematically profiled phytochemical constituents of Mangshanju, which was helpful for further utilization of Mangshanju owing to its abundant bioactive compounds.  相似文献   

9.
Iridoid glycosides (IGs), the major constituents in Fructus Gardeniae, have demonstrated various pharmacological activities, but there is no systematic chemical profile of IGs in Fructus Gardeniae in the published literature until now. Therefore, it is imperative that a rapid and sensitive high‐performance liquid chromatography coupled with quadrupole time‐of‐flight tandem mass spectrometry (HPLC‐Q/TOF‐MS/MS) method is established for comprehensive characterization of IGs in Fructus Gardeniae. Firstly, the fragmentation patterns of six known IGs were investigated and proposed and further concluded the diagnostic fragment ions and characteristic fragmentation pathways. Then, based on the summarized fragmentation patterns and the known compounds in the literatures, the other IGs in Fructus Gardeniae were identified successively. As a result, a total of 20 IGs were identified, of which three pairs of epimers were structurally characterized and differentiated. More importantly, one compound, the isoshanzhiside methyl ester, was tentatively identified as a new compound. The results of this study demonstrate the superiority of HPLC‐MS with a high‐resolution mass spectrometer for the rapid and sensitive structural elucidation of the multiple groups of constituents in Fructus Gardeniae. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Hongjingtian injection is made from Rhodiola wallichiana and used in the treatment of stable angina pectoris associated with coronary heart disease. In this study, the chemical constituents in Hongjingtian injection were comprehensively studied using liquid chromatography quadrupole time‐of‐flight mass spectrometry. A total of 49 compounds were identified or assumed, including 10 organic acids, nine phenylethanoids, 10 phenylpropanoids, two flavonoid glycosides, seven monoterpene glycosides, seven octylglycosides and four other types of compounds. The structures of seven compounds were confirmed by comparing their retention times, MS and UV spectra with the corresponding authentic standards. Amongst the 49 compounds, 35 were firstly found in R. wallichiana, while they have been reported in other species of the genus Rhodiola, including Rhodiola crenulata, Rhodiola sacra, Rhodiola rosea and Rhodiola kirilowii. The possible fragmentation pathways in the mass spectrometry of the major types of compounds are proposed and summarized. Our study demonstrates a rapid method for characterizing the chemical constituents present in the Hongjingtian injection, which could also be applied to the identification of chemical constituents in other TCM formulae containing R. wallichiana.  相似文献   

11.
Flunitrazepam (FNZ) is a potent hypnotic, sedative, and amnestic drug used to treat severe insomnia. In our recent study, FNZ metabolic profiles were investigated carefully. Six authentic human urine samples were purified using solid phase extraction (SPE) without enzymatic hydrolysis, and urine extracts were then analyzed by liquid chromatography‐Q exactive‐HF hybrid quadrupole‐Orbitrap‐mass spectrometry (LC‐QE‐HF‐MS), using the full scan positive ion mode and targeted MS/MS (ddms2) technique to make accurate mass measurements. There were 25 metabolites, including 13 phase I and 12 phase II metabolites, which were detected and tentatively identified by LC‐QE‐HF‐MS. In addition, nine previously unreported phase II glucuronide conjugates and four phase I metabolites are reported here for the first time. Eight metabolic pathways, including N‐reduction and O‐reduction, N‐glucuronidation, O‐glucuronidation, mono‐hydroxylation and di‐hydroxylation, demethylation, acetylation, and combinations, were implicated in this work, and 2‐O‐reduction together with dihydroxylation were two novel metabolic pathways for FNZ that were identified tentatively. Although 7‐amino FNZ is widely considered to be the primary metabolite, a previously unreported metabolites (M12) can also serve as a potential biomarker for FNZ misuse.  相似文献   

12.
Analysis of pesticide residues in water and food matrices is an active research area closely related to food safety and environmental issues. In this aspect mass spectrometry (MS) coupled to gas chromatography (GC) and liquid chromatography (LC) has been increasingly used in the analysis of pesticide residues in water and food. The increasing interest in application of high‐resolution mass spectrometry with time‐of‐flight (TOF) and hybrid triple quadrupole TOF in pesticide analysis is due to its capability of performing both targeted and nontargeted analysis. This article discusses an overview of the application of GC‐TOF‐MS and LC‐TOF‐MS in water and food matrices.  相似文献   

13.
A sensitive and reliable ultra high performance liquid chromatography coupled with quadrupole time‐of‐flight mass spectrometry method was established to separate and identify the chemical constituents of Zhi–Zi–Da–Huang decoction, a classic traditional Chinese medicine formula. The chromatographic separation was achieved on a Shim‐pack XR‐ODS C18 column (75  × 3.0 mm, 2.2 μm) using a gradient elution program. The detection was performed on a Waters Xevo G2 Q‐TOF mass spectrometer equipped with electrospray ionization source in both positive and negative modes. With the optimized conditions, a total of 82 compounds were identified or tentatively characterized. Of the 82 compounds, 21 compounds were identified by comparing the retention time and MS data with reference standards, the rest were characterized by analyzing MS data and retrieving the reference literature. In addition, 31 compounds were identified from Gardenia jasminoides Ellis, ten compounds were identified from Rheum palmatum L., 33 compounds were identified from Citrus aurantium L., and eight compounds were identified from Sojae Semen Praeparatum. Results indicated that iridoids, anthraquinones, flavonoids, isoflavonoids, coumarins, glycosides of crocetin, monoterpenoids, and organic acids were major constituents in Zhi–Zi–Da–Huang decoction. It is concluded that the developed ultra high performance liquid chromatography coupled with quadrupole time‐of‐flight mass spectrometry method with high sensitivity and resolution is suitable for identifying and characterizing the chemical constituents of Zhi–Zi–Da–Huang decoction, and the analysis provides a helpful chemical basis for further research on Zhi–Zi–Da–Huang decoction.  相似文献   

14.
Natural products have become one of the most important resources for discovering novel xanthine oxidase inhibitors, which are commonly employed in the treatment of hyperuricemia and gout. However, to date, few reports exist regarding the use of monoterpene glycosides as xanthine oxidase inhibitors. Thus, we herein report the use of ultrafiltration coupled with liquid chromatography in the screening of monoterpene glycoside xanthine oxidase inhibitors from the extract of Paeonia lactiflora (P. lactiflora ), and both high‐performance counter‐current chromatography and medium‐pressure liquid chromatography were employed to separate the main constituents. Furthermore, the xanthine oxidase inhibitory activities and the mechanisms of inhibition of the isolated compounds were evaluated using a multi‐mode microplate reader by Molecular Devices. As a result, three monoterpene glycosides were separated by combined high‐performance counter‐current chromatography and medium‐pressure liquid chromatography in purities of 90.4, 98.0, and 86.3%, as determined by liquid chromatography. These three compounds were identified as albiflorin, paeoniflorin, and 1‐O‐β‐ᴅ‐glucopyranosyl‐8‐O‐benzoylpaeonisuffrone by electrospray ionization tandem mass spectrometry, and albiflorin and paeoniflorin were screened as potential xanthine oxidase inhibitors by ultrafiltration with liquid chromatography. The evaluation results of xanthine oxidase inhibitory activity corresponded with the screening results, as only albiflorin and paeoniflorin exhibited xanthine oxidase inhibitory activity.  相似文献   

15.
Xiao Chai Hu Decoction (XCHD), named Sho‐saiko‐to in Japanese, is a well‐known traditional Chinese medicine formula used in Asia. However, the characterization methods used in the past have lacked sensitivity and the nature of the active constituents of XCHD remains unclear. This study was carried out to establish the hyphenated method of bioactivity‐guided fractionation and liquid chromatography coupled with electrospray ionization quadrupole time‐of‐flight mass spectrometry (LC‐ESI‐QTOFMS/MS) in order to identify the major bioactive constituents of XCHD. D101 macroporous resin was used to separate and enrich the material base into four fractions, XCHD‐1, XCHD‐2, XCHD‐3 and XCHD‐4. Each fraction was then evaluated for its antidepressant effect using depression‐related parameters. An LC‐ESI‐QTOFMS/MS method in both positive and negative ion mode was also applied for separation and identification of the biological active fractions of XCHD. As a result, 79 compounds including polysaccharides, flavonoids, saikosaponins, ginsenosides, licoricesaponins and gingerols were detected, 69 of them were identified or tentatively characterized. Based on our preliminary characterization investigations, polysaccharides, gingerols and flavonoids in XCHD may contribute to the antidepressant effect of XCHD. In conclusion, the hyphenated method of bioactivity‐guided fractionation and LC‐ESI‐QTOFMS/MS was meaningful for the isolation and preliminary identification of the biological active components in complex matrices of traditional Chinese medicine. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
PHY906 is a Chinese medicine formulation prepared from four medicinal herbs for adjuvant cancer chemotherapy. In this paper, liquid chromatography/electrospray ionization time-of-flight mass spectrometry (LC/ESI-TOFMS) was used to clarify the chemical composition of PHY906. The aqueous extract of PHY906 was separated on a Waters Atlantis C(18) column, and was eluted with acetonitrile/0.05% (v/v) formic acid. The separated compounds were identified with pure standards, or tentatively characterized by analyzing their mass spectra recorded in both negative and positive ion polarity modes. Further structural information was obtained from in-source fragmentation. Based on the LC/MS analysis, we proposed the structures for 64 bioactive compounds, including flavonoids, triterpene saponins, and monoterpene glycosides. All the compounds identified from PHY906 were further assigned in the four individual herbs, and some of them are reported for the first time.  相似文献   

17.
In this work, the chemical constituents in Da‐Huang‐Gan‐Cao‐Tang, a traditional Chinese formula, were studied by liquid chromatography coupled with quadrupole time‐of‐flight tandem mass spectrometry and liquid chromatography coupled with ion trap mass spectrometry for the first time. Among the 146 compounds detected in Da‐Huang‐Gan‐Cao‐Tang, 104 compounds were identified unambiguously or tentatively based on their accurate molecular weight and multistage MS data, including one potential novel compound and two reported in Glycyrrhiza genus for the first time. The possible fragmentation pathways were proposed and fragmentation rules of the major types of compounds were concluded. This study provided an example to facilitate the tedious identification of chemical composition in traditional Chinese medicine, and maybe a promising reference approach to research the analogous formulae.  相似文献   

18.
19.
The sulfonylurea urea drug glyburide (glibenclamide) is widely used for the treatment of diabetes milletus and gestational diabetes. In previous studies monohydroxylated metabolites were identified and characterized for glyburide in different species, but the metabolite owing to the loss of cyclohexyl ring was identified only in mouse. Glyburide upon incubation with hepatic microsomes resulted in 10 metabolites for human. The current study identifies new metabolites of glyburide along with the hydroxylated metabolites that were reported earlier. The newly identified drug metabolites are dihydroxylated metabolites, a metabolite owing to the loss of cyclohexyl ring and one owing to hydroxylation with dehydrogenation. Among the 10 identified metabolites, there were six monohydroxylated metabolites, one dihydroxylated metabolite, two metabolites owing to hydroxylation and dehydrogenation, and one metabolite owing to the loss of cyclohexyl ring. New metabolites of glyburide were identified and characterized using liquid chromatography–diode array detector–quadruple‐ion trap–mass spectrometry/mass spectrometry (LC‐DAD‐Q‐TRAP‐MS/MS). An enhanced mass scan–enhanced product ion scan with information‐dependent acquisition mode in a Q‐TRAP‐MS/MS system was used to characterize the metabolites. Liquid chromatography with diode array detection was used as a complimentary technique to confirm and identify the metabolites. Metabolites formed in higher amounts were detected in both diode array detection and mass spectrometry detection. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
In this study, a rapid and reliable assay has been developed for quantification of pinane monoterpene glycosides in cortex Moutan; it is based on capillary high performance liquid chromatography coupled with electrospray ionization mass spectrometry (capillary HPLC-ESI MS). This method utilizes capillary HPLC for the separation of seven pinane monoterpene glycosides in a methanol extract of the botanical sample followed by negative ion electrospray ionization and single ion monitoring (SIM). The compounds of interest in the sample were unambiguously identified on the basis of information about retention time and quasi-molecular ions ([M-H](-)) or adduct ions ([M+HCOO](-)). Validation parameters of the method were established. The linearity range was 1.01-105.5 microg/mL with the square of correlation coefficients lying in the range of 0.9965-0.9997, limits of detection were on the fmol level, the average recoveries varied between 91.8 and 101.0%, and good precision values (RSD, 1.2-4.91%) for peak area were obtained. After validation, the applicability of the method for determination of these pinane monoterpene glycosides in cortex Moutan has been demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号