首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An electrically permeable interface crack with a frictionless contact zone at the right crack tip between two semi-infinite piezoelectric spaces under the action of a remote electromechanical loading and a temperature flux is considered. Assuming that all fields are independent on the coordinate x2 co-directed with the crack front, the stresses, the electrical and the temperature fluxes as well as the derivatives of the jumps of the displacements, the electrical potential and the temperature at the interface are presented via a set of analytic functions in the (x1,x3)-plane with a cut along the crack. Due to this representation firstly an auxiliary problem concerning the direction of the heat flux permitting a transition from a perfect thermal contact to a separation has been solved for a piezoelectric bimaterial. Besides, an inhomogeneous combined Dirichlet–Riemann boundary value problem has been formulated and solved exactly for the above mentioned interface crack. Stress and electrical displacements intensity factors are found in a clear analytical form which is especially easier for a small contact zone length. A simple equation and a closed form analytical formula for the determination of the real contact zone length have been derived and compared with the associated equation of the classical (oscillating) interface crack model defining the zone of crack faces interpenetration. For a numerical illustration of the obtained results a bimaterial cadmium selenium/glass has been used, and the influence of the heat flux upon the contact zone length and the associated stress intensity factor has been shown.  相似文献   

2.
The solution for an elliptical cavity in an infinite two-dimensional magnetoelectroelastic medium subject to remotely uniformly applied combined mechanical–electric–magnetic loadings is obtained by using the Stroh formalism and the exact boundary conditions along the surface of the cavity. By letting the minor-axis of the cavity to zero the solution for a crack is deduced. A self-consistent method is proposed to calculate the real crack opening under the combined mechanical–electric–magnetic loadings. The method requires that the crack opening is the minor-axis of the elliptical opening profile. Beside the real crack solution, four different extreme models, i.e., the impermeable crack, permeable crack, electrically impermeable and magnetically permeable crack and electrically permeable and magnetically impermeable crack, are discussed. An expression of the strain energy density factor is derived. Numerical results of the strain energy density at the crack tip are given for a BaTiO3–CoFe2O4 composite with the piezoelectric BaTiO3 material being the inclusion and the magnetostrictive CoFe2O4 material being the matrix. The effects of the proportion of the two phases, permeability of the crack to electric and magnetic fields, the electric and magnetic loadings on the strain energy density factor are discussed.  相似文献   

3.
The transient response of a magneto-electro-elastic material with a penny-shaped dielectric crack subjected to in-plane magneto-electro-mechanical impacts is made. To simulate an opening crack with a dielectric interior, the crack-face electromagnetic boundary conditions are supposed to depend on the crack opening displacement and the jumps of electric and magnetic potentials across the crack. Four ideal crack-face electromagnetic boundary conditions involving a combination of electrically permeable or impermeable and magnetically permeable or impermeable assumptions can be reduced. The Laplace and Hankel transform techniques are further utilized to solve the mixed initial-boundary-value problem. Three coupling Fredholm integral equations are obtained and solved by the composite Simpson's rule. Dynamic field intensity factors of stress, electric displacement, magnetic induction, crack opening displacement (COD), electric potential and magnetic potential are given in the Laplace transform domain. By means of a numerical inversion of the Laplace transform, numerical results are calculated to show the variations of the physical parameters of concern versus the normalized time in graphics. The effects of applied electric and magnetic loads on the dynamic intensity factors of stress and COD, and the dynamic energy release rate for a BaTiO3-CoFe2O4 composite with a penny-shaped vacuum crack are discussed in detail.  相似文献   

4.
An inplane problem for a crack moving with constant subsonic speed along the interface of two piezoelectric materials is considered. A mechanically frictionless and electrically permeable contact zone is assumed at the right crack tip whilst for the open part of the crack both electrically permeable and electrically insulated conditions are considered. In the first case a moving concentrated loading is prescribed at the crack faces and in the second case an additional electrical charge at the crack faces is prescribed as well. The main attention is devoted to electrically permeable crack faces. Introducing a moving coordinate system at the leading crack tip the corresponding inhomogeneous combined Dirichlet–Riemann problem is formulated and solved exactly for this case. All electromechanical characteristics at the interface are presented in a closed form for arbitrary contact zone lengths, and further, the transcendental equation for the determination of the real contact zone length is derived. As a particular case of the obtained solution a semi-infinite crack with a contact zone is considered. The numerical analysis performed for a certain piezoelectric bimaterial showed an essential increase of the contact zone length and the associated stress intensity factor especially for the near-critical speed region. Similar investigations have been performed for an electrically insulated crack and the same behavior of the above mentioned parameters is observed.  相似文献   

5.
An interface crack with a frictionless contact zone at the right crack-tip between two dissimilar magnetoelectroelastic materials under the action of a thermal flux and remote magnetoelectromechanical loads is considered. The open part of the crack is assumed to be electrically impermeable and magnetically permeable, and the crack faces are assumed to be heat insulted. The inhomogeneous combined Dirichlet–Riemann and Hilbert boundary value problems are, respectively, formulated and solved analytically. Stress, electrical displacement intensity factors as well as energy release rate are found in analytical forms, and analytical expressions for the contact zone length have been obtained for both the general case and the case of small contact zone length. Some numerical results are presented, which show clearly the effects of thermal and magnetoelectromechanical loads on the contact zone length, stress intensity factor and energy release rate. Results presented in this paper should have potential applications to the design of multilayered magnetoelectroelastic structures and devices.  相似文献   

6.
Summary An interface crack with an artificial contact zone at the right-hand side crack tip between two piezoelectric semi-infinite half-planes is considered under remote mixed-mode loading. Assuming the stresses, strains and displacements are independent of the coordinate x 2, the expression for the displacement jumps and stresses along the interface are found via a sectionally holomorphic vector function. For piezoceramics of the symmetry class 6 mm and for electrically permeable crack faces, the problem is reduced to a combined Dirichlet-Riemann boundary value problem which can be solved analytically. Further, analytical expressions for the stresses, electrical displacements, derivatives of elastic displacement jumps, stress and electrical intensity factors are found at the interface. Real contact zone lengths and the well-known oscillating solution are derived from the obtained solution as well. Analytical relationships between the fracture-mechanical parameters of various models are found, and recommendations are suggested concerning the application of numerical methods to the problem of an interface crack in the discontinuity area of a piezoelectric bimaterial. Received 16 March 1999; accepted for publication 31 May 1999  相似文献   

7.
The hyper-singular boundary integral equation method of crack analysis in three-dimensional transversely isotropic magnetoelectroelastic media is proposed. Based on the fundamental solutions or Green’s functions of three-dimensional transversely isotropic magnetoelectroelastic media and the corresponding Somigliana identity, the boundary integral equations for a planar crack of arbitrary shape in the plane of isotropy are obtained in terms of the extended displacement discontinuities across crack faces. The extended displacement discontinuities include the displacement discontinuities, the electric potential discontinuity and the magnetic potential discontinuity, and correspondingly the extended tractions on crack face represent the conventional tractions, the electric displacement and the magnetic induction boundary values. The near crack tip fields and the intensity factors in terms of the extended displacement discontinuities are derived by boundary integral equation approach. A solution method is proposed by use of the analogy between the boundary integral equations of the magnetoelectroelastic media and the purely elastic materials. The influence of different electric and magnetic boundary conditions, i.e., electrically and magnetically impermeable and permeable conditions, electrically impermeable and magnetically permeable condition, and electrically permeable and magnetically impermeable condition, on the solutions is studied. The crack opening model is proposed to consider the real crack opening and the electric and magnetic fields in the crack cavity under combined mechanical-electric-magnetic loadings. An iteration approach is presented for the solution of the non-linear model. The exact solution is obtained for the case of uniformly applied loadings on the crack faces. Numerical results for a square crack under different electric and magnetic boundary conditions are displayed to demonstrate the proposed method.  相似文献   

8.
Extending the polarization saturation model [Gao et al., 1997. Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic. J. Mech. Phys. Solids 45, 491-510] and the dielectric breakdown (DB) model [Zhang et al., 2005. The strip dielectric breakdown model. Int. J. Fract. 132, 311-327] in piezoelectric materials, the Strip Electric-Magnetic Breakdown (SEMB) model is proposed for electrically and magnetically impermeable crack in a magnetoelectroelastic medium to study the effect of the nonlinear character of electric field and magnetic field on fracture of magnetoelectroelastic materials. In the SEMB model, the electric field in the strip of the electric breakdown zone ahead of the crack tip is equal to the electric breakdown strength, while the magnetic filed in the strip of the magnetic breakdown zone is equal to the magnetic breakdown strength. By using the extended Stroh formalism and the extended dislocation modeling of a crack, the Griffith crack problem under the electrically and magnetically elastic-plastic condition in a magnetoelectroelastic medium is reduced to a set of dual integral equations. The sizes of the electric breakdown zone and the magnetic breakdown zone, the extended intensity factors and the local J-integral are obtained. The effect of the combined mechanical-electric-magnetic loadings on the local J-integral is studied.  相似文献   

9.
A plane problem for an electrically conducting interface crack in a piezoelectric bimaterial is studied. The bimaterial is polarized in the direction orthogonal to the crack faces and loaded by remote tension and shear forces and an electrical field parallel to the crack faces. All fields are assumed to be independent of the coordinate co-directed with the crack front. Using special presentations of electromechanical quantities via sectionally-analytic functions, a combined Dirichlet–Riemann and Hilbert boundary value problem is formulated and solved analytically. Explicit analytical expressions for the characteristic mechanical and electrical parameters are derived. Also, a contact zone solution is obtained as a particular case. For the determination of the contact zone length, a simple transcendental equation is derived. Stress and electric field intensity factors and, also, the contact zone length are found for various material combinations and different loadings. A significant influence of the electric field on the contact zone length, stress and electric field intensity factors is observed. Electrically permeable conditions in the crack region are considered as well and matching of different crack models has been performed.  相似文献   

10.
The dynamic response of an interfacial crack between two dissimilar magnetoelectroelastic layers is investigated under magnetic, electrical and mechanical impact loadings. Four kinds of ideal crack-face assumptions, i.e., magnetoelectrically impermeable (Case 1), magnetically impermeable and electrically permeable (Case 2), magnetically permeable and electrically impermeable (Case 3) and magnetoelectrically permeable (Case 4), are adopted separately. The dynamic field intensity factors and energy release rates are derived. The effects of loading combinations and crack configurations especially for the former on the dynamic response are examined according to energy release rate criterion. The numerical results show that, among others, a negative magnetic (or electrical) loading is generally prone to inhibit the crack extension rather than a positive one for a magnetically (or electrically) impermeable interfacial crack. Results presented in this paper should have potential applications to the design of multilayered magnetoelectroelastic structures.  相似文献   

11.
This paper discusses electromagnetic boundary conditions on crack faces in magneto- electroelastic materials, where piezoelectric, piezomagnetic and magnetoelectric effects are coupled. A notch of finite thickness in these materials is also addressed. Four idealized electromagnetic boundary conditions assumed for the crack-faces are separately investigated, i.e. (a) electrically and magnetically impermeable (crack-face), (b) electrically impermeable and magnetically permeable, (c) electrically permeable and magnetically impermeable, and (d) electrically and magnetically permeable. The influence of the notch thickness on important parameters, such as the field intensity factors, the energy release rate at the notch tips and the electromagnetic fields inside the notch, are studied and the results are obtained in closed-form. Results under different idealized electromagnetic boundary conditions on the crack-face are compared, and the applicability of these idealized assumptions is discussed.The project supported by the National Natural Science Foundation of China (10102004) The English text was polished by Yunming Chen.  相似文献   

12.
For a crack in a magnetoelectroelastic plane under the electrically and magnetically semi-permeable boundary condition, we derive the non-linear analytical solution of the strip electric–magnetic polarization saturation (EMPS) model. Using the extended dislocation theory and integral equation method, we obtain the electric and magnetic yielding zones, as well as the field intensity factor and local J-integral. Adapting an iterative method, numerical examples were performed to analyze the effect of different boundary conditions and the electric–magnetic saturated properties on the electric displacement and magnetic induction in the crack cavity, electric and magnetic yielding zones, stress intensity factor and local J-integral.  相似文献   

13.
An interface crack of a finite length moving with a constant subsonic speed v along an interface of two semi-infinite piezoelectric spaces is considered. It is assumed that the bimaterial compound is loaded by a remote mixed mode mechanical loading and a thermoelectrical field and that a frictionless contact zone arises at the leading crack tip. Electrically permeable and electrically insulated cases of the open part of the crack are involved into the consideration. By introducing a moving coordinate system at the crack tip the problem is reduced to a combined Dirichlet–Riemann boundary value problem which is solved exactly. For both cases of the electrical conditions the transcendental equations are obtained for the determination of the real contact zone length, and moreover, the associated closed form asymptotic formulas are found for small values of this parameter. Variations of the contact zone length and the stress intensity factor with respect to the crack speed and the loading have been investigated both for electrically permeable and electrically insulated cases.  相似文献   

14.
An interface crack in a bimaterial piezoelectric space under the action of antiplane mechanical and in-plane electric loadings is analyzed. One zone of the crack faces is electrically conductive while the other part is electrically permeable. All electro-mechanical values are presented using sectionally-analytic vector-functions and a combined Dirichlet-Riemann boundary value problem is formulated. An exact analytical solution of this problem is obtained. Simple analytical expressions for the shear stress, electric field and also for mechanical displacement jump of the crack faces are derived. These values are also presented graphically along the corresponding parts of the material interface. Singular points of the shear stress, electric field and electric displacement jump are found. Their intensity factors are determined as well. Intensity factors variations with respect to the external electric field and different ratios between the electrically conductive and electrically permeable crack face zones are also demonstrated.  相似文献   

15.
This paper discusses the different electromagnetic boundary conditions on the crack-faces in magnetoelectroelastic materials, which possess coupled piezoelectric, piezomagnetic and magnetoelectric effects. A notch of finite thickness in these materials containing air (or vacuum) is also addressed. Four ideal crack-face electromagnetic boundary condition assumptions, that is, (a) electrically and magnetically impermeable crack, (b) electrically impermeable and magnetically permeable crack, (c) electrically permeable and magnetically impermeable crack and (d) electrically and magnetically permeable crack, are investigated separately. The influence of notch thickness on the field intensity factors at notch tips and the electromagnetic field inside the notch are obtained in closed-form. The results are compared with the ideal crack solutions. Applicability of crack-face electromagnetic boundary condition assumptions is discussed.  相似文献   

16.
Analytical solutions for an anti-plane Griffith moving crack inside an infinite magnetoelectroelastic medium under the conditions of permeable crack faces are formulated using integral transform method. The far-field anti-plane mechanical shear and in-plane electrical and magnetic loadings are applied to the magnetoelectroelastic material. Expressions for stresses, electric displacements and magnetic inductions in the vicinity of the crack tip are derived. Field intensity factors for magnetoelectroelastic material are obtained. The stresses, electric displacements and magnetic inductions at the crack tip show inverse square root singularities. The moving speed of the crack have influence on the dynamic electric displacement intensity factor (DEDIF) and the dynamic magnetic induction intensity factor (DMIIF), while the dynamic stress intensity factor (DSIF) does not depend on the velocity of the moving crack. When the crack is moving at very lower or very higher speeds, the crack will propagate along its original plane; while in the range of Mc1 < M < Mc2, the propagation of the crack possibly brings about the branch phenomena in magnetoelectroelastic media.  相似文献   

17.
Dynamic analysis of two collinear electro-magnetically dielectric cracks in a piezoelectromagnetic material is made under in-plane magneto-electro-mechanical impacts. Generalized semi-permeable crack-face boundary conditions are proposed to simulate realistic opening cracks with dielectric. Ideal boundary conditions of a combination of electrically permeable or impermeable and magnetically permeable or impermeable assumptions are several limiting cases of the semi-permeable dielectric crack. Utilizing the Laplace and Fourier transforms, the mixed initial-boundary-value problem is reduced to solving singular integral equations with Cauchy kernel. Dynamic intensity factors of stress, electric displacement, magnetic induction and crack opening displacement (COD) near the inner and outer crack tips are determined in the Laplace transform domain. Numerical results for a special magnetoelectroelastic solid are calculated to show the influences of the dielectric permittivity and magnetic permeability inside the cracks on the crack-face electric displacement and magnetic induction. By means of a numerical inversion of the Laplace transform, the variations of the normalized intensity factors of stress and COD are discussed against applied magnetoelectric impact loadings and the geometry of the cracks for fully impermeable, vacuum, fully permeable cracks and shown in graphics.  相似文献   

18.
The antiplane analysis is made for a bimaterial BaTiO3–CoFe2O4 composite wedge containing an interface crack. The coupled magneto-electro-elastic field is induced by the piezoelectric/piezomagnetic BaTiO3–CoFe2O4 composite materials. For the crack problems, the intensity factors of stress, strain, electric displacement, electric field, magnetic induction and magnetic field at crack tips are derived analytically. Also, the energy density criterion is applied to predict the fracture behavior of the interface crack. The numerical results also show that the energy release rate for a crack in a single wedge is negative.  相似文献   

19.
Summary This paper deals with the calculation of the J-integral for electrically limited permeable cracks in piezoelectrics. The electromechanical J-integral is extended to account for electrical crack surface charge densities representing electric fields inside the crack. To avoid the costly implementation of the line integral along the crack faces, an alternative is proposed replacing the line integral by a simple jump term across the crack faces. Previous work by other authors related to the same subject is critically illuminated. The derivation was inspired by the Dugdale- Barenblatt cohesive zone model and yields an expression containing solely the local jump of displacements and electric potentials across the crack faces. This approach is shown to be exact for the Griffth crack.Numerical examples give evidence that the simplified approach works well for arbitrary crack configurations too.  相似文献   

20.
This paper constitutes the second part of a study of interface cracks with contact zones in thermopiezoelectrical bimaterials, and it is concerned with the case of an electrically impermeable interface crack. The principal physical peculiarity of this case in comparison with an impermeable interface crack is connected with the dependencies of the contact zone length and the fracture mechanical parameters on the prescribed electrical flux, and in a mathematical sense the main peculiarity is concerned with the reduction of the problem in question to the joint solution of inhomogeneous combined Dirichlet–Riemann and Hilbert boundary value problems. The exact analytical solutions of the mentioned problems have been found for an arbitrary contact zone length, and the required thermal, mechanical and electrical characteristics at the interface as well as the associated fracture mechanical parameters at the corresponding crack tips are presented. The transcendental equations for the determination of the real contact zone length have been obtained for a general case and for a small contact zone length in an especially simple form. Using the admissible directions of the heat and the electrical fluxes defined in this paper as well, the dependencies of the real contact zone length and the associated fracture and electrical intensity factors on the intensities of the thermal and electrical fluxes are presented in tables and associated diagrams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号