首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The general nonlinear intrinsic equations of motion of an elastic composite beam are solved in order to obtain the elasto-dynamic response of a rotating articulated blade. The solution utilizes the linear Variational-Asymptotic Method (VAM) cross-sectional analysis, together with an improved damped nonlinear model for the rigid-body motion analysis of helicopter blades in coupled flap and lead-lag motions. The explicit (direct) integration algorithm implements the perturbation method in order to solve the transient form of the nonlinear intrinsic differential equations of motion and obtain the elasto-dynamic behavior of an accelerating composite blade. The specific problem considered is an accelerating articulated helicopter blade of which its motion is analyzed since it starts rotating from rest until it reaches the steady-state condition. It is observed that the steady-state solution obtained by this method compares very well with other available solutions. The resulting simulation code is a powerful tool for analyzing the nonlinear response of composite rotor blades; and for serving the ultimate aim of efficient noise and vibration control in helicopters.  相似文献   

2.
An analytical model for predicting the aeroelastic behavior of composite rotor blades with straight and swept tips is presented. The blade is modeled by beam type finite elements along the elastic axis. A single finite element is used to model the swept tip. The non-linear equations of motion for the finite element model are derived using Hamilton's principle and based on a moderate deflection theory and accounts for: arbitrary cross-sectional shape, pretwist, generally anisotropic material behavior, transverse shears and out-of-plane warping. Numerical results illustrating the effects of tip sweep, anhedral and composite ply orientation on blade aeroelastic behavior are presented. It is shown that composite ply orientation has a substantial effect on blade stability. At low thrust conditions, certain ply orientations can cause instability in the lag mode. The flap-torsion coupling associated with tip sweep can also induce aeroelastic instability in the blade. This instability can be removed by appropriate ply orientation in the composite construction.  相似文献   

3.
The dynamic stability of negative-velocity feedback control of piezoelectric composite plates using a finite element model is investigated. Lyapunov’s energy functional based on the derived general governing equations of motion with active damping is used to carry out the stability analysis, where it is shown that the active damping matrix must be positive semi-definite to guarantee the dynamic stability. Through this formulation, it is found that imperfect collocation of piezoelectric sensor/actuator pairs is not sufficient for dynamic stability in general and that ignoring the in-plane displacements of the midplane of the composite plate with imperfectly collocated piezoelectric sensor/actuator pairs may cause significant numerical errors, leading to incorrect stability conclusions. This can be further confirmed by examining the complex eigenvalues of the transformed linear first-order state space equations of motion. To overcome the drawback of finding all the complex eigenvalues for large systems, a stable state feedback law that satisfies the second Lyapunov’s stability criteria strictly is proposed. Numerical results based on a cantilevered piezoelectric composite plate show that the feedback control system with an imperfectly collocated PZT sensor/actuator pair is unstable, but asymptotic stability can be achieved by either bonding the PZT sensor/actuator pair together or changing the ply stacking sequence of the composite substrate to be symmetric. The performance of the proposed stable controller is also demonstrated. The presented stability analysis is of practical importance for effective design of asymptotically stable control systems as well as for choosing an appropriate finite element model to accurately predict the dynamic response of smart piezoelectric composite plates.  相似文献   

4.
There is a growing interest in extracting more power per turbine by increasing the rotor size in offshore wind turbines. As a result, the turbine blades will become longer and therefore more flexible, and a flexible blade is susceptible to flow-induced instabilities. In order to design and build stable large wind turbine blades, the onset of possible flow-induced instabilities should be considered in the design process. Currently, there is a lack of experimental work on flow-induced instabilities of wind turbine blades. In the present study, a series of experiments were conducted and flow-induced instabilities were observed in wind turbine blades. A small-scale flexible blade based on the NREL 5 MW reference wind turbine blade was built using three-dimensional printing technique. The blade was placed in the test section of a wind tunnel and was subjected to uniform oncoming flow, representing the case of a parked wind turbine blade. The blade׳s tip displacement was measured using a non-contacting displacement measurement device as the oncoming wind speed was increased. At a critical wind speed, the blade became unstable and experienced limit cycle oscillations. The amplitude of these oscillations increased with increasing wind speed. Both supercritical and subcritical dynamic instabilities were observed. The instabilities were observed at different angles of attack and for blades both with and without a geometric twist. It was found that the blade twist had a significant influence on the observed instability: a blade without a twist experienced a strong subcritical instability.  相似文献   

5.
In real flows unsteady phenomena connected with the circumferential non-uniformity of the main flow and those caused by oscillations of blades are observed only jointly. An understanding of the physics of the mutual interaction between gas flow and oscillating blades and the development of predictive capabilities are essential for improved overall efficiency, durability and reliability. In the study presented, the algorithm proposed involves the coupled solution of 3D unsteady flow through a turbine stage and the dynamics problem for rotor-blade motion by the action of aerodynamic forces, without separating the outer and inner flow fluctuations. The partially integrated method involves the solution of the fluid and structural equations separately, but information is exchanged at each time step, so that solution from one domain is used as a boundary condition for the other domain. 3-D transonic gas flow through the stator and rotor blades in relative motion with periodicity on the whole annulus is described by the unsteady Euler conservation equations, which are integrated using the explicit monotonous finite volume difference scheme of Godunov–Kolgan. The structural analysis uses the modal approach and a 3-D finite element model of a blade. The blade motion is assumed to be constituted as a linear combination of the first natural modes of blade oscillations, with the modal coefficients depending on time. A calculation has been done for the last stage of the steam turbine, under design and off-design regimes. The numerical results for unsteady aerodynamic forces due to stator–rotor interaction are compared with results obtained while taking into account blade oscillations. The mutual influence of both outer flow non-uniformity and blade oscillations has been investigated. It is shown that the amplitude-frequency spectrum of blade oscillations contains the high-frequency harmonics, corresponding to the rotor moving past one stator blade pitch, and low-frequency harmonics caused by blade oscillations and flow non-uniformity downstream from the blade row; moreover, the spectrum involves the harmonics which are not multiples of the rotation frequency.  相似文献   

6.
In this study, the nonlinear aeroelastic stability of wind turbine blade with bending–bending–twist coupling has been investigated for composite thin-walled structure with pretwist angle. The aerodynamic model used here is the differential dynamic stall nonlinear ONERA model. The nonlinear aeroelastic equations are reduced to ordinary equations by Galerkin method, with the aerodynamic force decomposition by strip theory. The nonlinear resulting equations are solved by a time-marching approach, and are linearized by small perturbation about the equilibrium point. The nonlinear aeroelastic stability characteristics are investigated through eigenvalue analysis, nonlinear time domain response, and linearized time domain response.  相似文献   

7.
This paper presents a coupled flap–lag–torsion aeroelastic stability analysis and response of a hingeless helicopter blade in the hovering flight condition. The boundary element method based on the wake eigenvalues is used for the prediction of unsteady airloads of the rotor blade. The aeroelastic equations of motion of the rotor blade are derived by Galerkin's method. To obtain the aeroelastic stability and response, the governing nonlinear equations of motion are linearized about the nonlinear steady equilibrium positions using small perturbation theory. The equilibrium deflections are calculated through the iterative Newton–Raphson method. Numerical results comprising steady equilibrium state deflections, aeroelastic eigenvalues and time history response about these states for a two-bladed rotor are presented, and some of them are compared with those obtained from a two-dimensional quasi-steady strip aerodynamic theory. Also, the effect of the number of aerodynamic eigenmodes is investigated. The results show that the three-dimensional aerodynamic formulation has considerable impact on the determination of both the equilibrium condition and lead-lag instability.  相似文献   

8.
The aim of this paper is to describe the methodology followed in order to determine the viscous effects of a uniform wind on the blades of small horizontal-axis wind turbines that rotate at a constant angular speed. The numerical calculation of the development of the three-dimensional boundary layer on the surface of the blades is carried out under laminar conditions and considering flow rotation, airfoil curvature and blade twist effects. The adopted geometry for the twisted blades is given by cambered thin blade sections conformed by circular are airfoils with constant chords. The blade is working under stationary conditions at a given tip speed ratio, so that an extensive laminar boundary layer without flow separation is expected. The boundary layer growth is determined on a non-orthogonal curvilinear coordinate system related to the geometry of the blade surface. Since the thickness of the boundary layer grows from the leading edge of the blade and also from the tip to the blade root, a domain transformation is proposed in order to solve the discretized equations in a regular computational 3D domain. The non-linear system of partial differential coupled equations that governs the boundary layer development is numerically solved applying a finite difference technique using the Krause zig-zag scheme. The resulting coupled equations of motion are linearized, leading to a tridiagonal system of equations that is iteratively solved for the velocity components inside the viscous layer applying the Thomas algorithm, procedure that allows the subsequent numerical determination of the shear stress distribution on the blade surface.  相似文献   

9.
A framework is described and demonstrated for CFD analysis of helicopter rotors in hover and forward flight. Starting from the Navier–Stokes equations, the paper describes the periodic rotor blade motions required to trim the rotor in forward flight (blade flapping, blade lead‐lag and blade pitching) as well as the required mesh deformation. Throughout, the rotor blades are assumed to be rigid and the rotor to be fully articulated with separate hinges for each blade. The employed method allows for rotors with different numbers of blades and with various rotor hub layouts to be analysed. This method is then combined with a novel grid deformation strategy which preserves the quality of multi‐block structured, body‐fitted grids around the blades. The coupling of the CFD method with a rotor trimming approach is also described and implemented. The complete framework is validated for hovering and forward flying rotors and comparisons are made against available experimental data. Finally, suggestions for further development are put forward. For all cases, results were in good agreement with experiments and rapid convergence has been obtained. Comparisons between the present grid deformation method and transfinite interpolation were made highlighting the advantages of the current approach. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
直升机旋翼/机体动稳定性研究进展   总被引:2,自引:0,他引:2  
首先对直升机旋翼/机体动不稳定性问题的种类进行了简要概述,包括旋翼挥舞/变距、变距/摆振、挥舞/摆振和挥舞/摆振/变距耦合等孤立旋翼动不稳定性问题,以及直升机地面共振和空中共振等旋翼/机体耦合动不稳定性问题,然后分别从气动力与结构的高精度数值模型、动稳定性的计算分析方法和实验模型测试3 个方面详细介绍了直升机旋翼/机体动不稳定性问题的研究现状,并着重讨论了直升机旋翼/机体动稳定性分析技术最近的主要研究方向:耦合CFD(computational fluid dynamics)/CSD(computational structuraldynamics) 的直升机旋翼气弹动稳定性分析、复合材料旋翼动稳定性分析及其材料不确定性影响、带减摆器的旋翼/机体动稳定性分析和先进直升机构型的旋翼/机体动稳定性分析,最后对直升机旋翼/机体动稳定性研究的发展趋势进行了展望.  相似文献   

11.
计算叶片力学特性的三维8节点非协调有限单元法   总被引:4,自引:0,他引:4  
针对叶片结构几何形状复杂的特点,建立了能进行叶片力学特性分析的三维8节点非协调有限单元模型。该模型采用了几何非线性和线弹性模式,来考虑叶片径向刚度远大于弯曲刚度而引起的在不同转速下初应力对叶片的作用,能够正确反映叶片的弯曲和扭转耦合振动模态、叶片组的切向和轴向振动模态以及它的应力状态。根据质量等效和力等效的原理,导出了在非协调单元中计算单元变形能时,记入附加的内部自由度,而计算单元的动能、体积力、表面力、以及阻尼力所做的虚功时,不记入附加的内部自由度,这是不同于目前一些文献中的提法。最后,通过实例计算验证了该模型的正确性。  相似文献   

12.
在现代各种透平机械1)中,随着性能要求的提高,叶片在半径方向的长度有着迅速的增高.在具有这种长叶片的透平机械的设计中,我们必须准确地计算气体在半径方向的变化,然后方能得到正确的叶片形状.在本文第三节中,我们首先根据气体动力学的基本定律,推导出一些适用于透平机械内气体流动的基本方程.  相似文献   

13.
This paper considers the stability and eigenvalue analyses for a bladed rotor which goes under cylindrical and conical whirling. The model consists of a group of flexible blades which are modeled by beams and rigid disk on the elastic bearings. The model is a Hamiltonian system which is perturbed by small dissipative forces. Krein’s theorem reveals that the forward whirling mode and the blade collective motion may cause instability when their frequencies cut themselves in the Campbell diagram. An unstable interaction between the blades and the conical whirling is discovered. The eigenmode and eigenvalue evolutions are determined on the stability boundary. The bifurcation analysis is performed by applying multiple scales method around the stability boundary. It is shown that the damping distribution between the blades and the bearings may shift the unstable mode.  相似文献   

14.
This paper examines the flow physics and principles of force production on a cycloidal rotor (cyclorotor) in forward flight. The cyclorotor considered here consists of two blades rotating about a horizontal axis, with cyclic pitch angle variation about the blade quarter-chord. The flow field at the rotor mid-span is analyzed using smoke flow visualization and particle image velocimeV are compared with flow fields predicted using 2D CFD and time-averaged force measurements acquired in an open-jet wind tunnel at three advance ratios. It is shown that the experimental flow field is nearly two dimensional at μ = 0.73 allowing for qualitative comparisons to be made with CFD. The incoming flow velocity decreases in magnitude as the flow passes through the retreating (upper) half of the rotor and is attributed to power extraction by the blades. A significant increase in flow velocity is observed across the advancing (lower) half of the rotor. The aerodynamic analysis demonstrates that the blades accelerate the flow through the lower aft region of the rotor, where they operate in a high dynamic pressure environment. This is consistent with CFD-predicted values of instantaneous aerodynamic forces which reveal that the aft section of the rotor is the primary region of force production. Phase-averaged flow field measurements showed two blade wakes in the flow, formed by each of the two blades. Analysis of the blades at several azimuthal positions revealed two significant blade-wake interactions. The locations of these blade-wake interactions are correlated with force peaks in the CFD-predicted instantaneous blade forces and highlight their importance to the generation of lift and propulsive force of the cyclorotor.  相似文献   

15.
A passive twist control is proposed as an adaptive way to maximize the overall efficiency of the small-scale rotor blade for multifunctional aircrafts. Incorporated into a database of airfoil characteristics, Blade Element Momentum Theory is implemented to obtain the blade optimum twist rates for hover and forward flight. In order to realize the required torsion of blade between hover and forward flight, glass/epoxy laminate blade is proposed based on Centrifugal Force Induced Twist concept. Tip mass is used to improve the nose-down torsion and the stabilization of rotating flexible blade. The laminate blades are tested in hover and forward flight modes, with deformations measured by Laser Displacement Sensor. Two Laser Displacement Sensors are driven by the tracking systems to scan the rotating blade from root to tip. The distance from blade surface to a reference plane can be recorded section by section. Then, a polynomial surface fitting is applied to reconstruct the shape of rotating blade, including the analysis of measurement precision based on the Kline–McClintock method. The results from deformation testings show that nose-down torsion is generated in each flight mode. The data from a Fluid Structure Interaction model agrees well with experimental results at an acceptable level in terms of the trend predictions.  相似文献   

16.
旋翼气动弹性耦合动力学方程本质上是一组刚性比较大的非线性偏微分方程。在有限元结构离散后,可改写为非齐次微分方程组,其中非齐次项是桨叶运动量(位移与速度)和气动载荷的函数。针对这类方程,本文尝试引入精细积分法及其衍生格式,借助数值方法计算Duhamel积分项。从积分精度与数值稳定性方面比较研究具有代表性的精细库塔法和高精度直接积分法。结合隐式积分算法,评估精细积分法应用于旋翼动力学方程的可行性。算例表明,精细积分法对矩形直桨叶动力学方程具有足够的求解精度。  相似文献   

17.
The compatibility between a composite beam cross-sectional analysis based on the variational asymptotic approach, and a helicopter rotor blade model which is part of a comprehensive rotorcraft analysis code is examined. It was found that the finite element cross-sectional analysis code VABS can be combined with a moderate deflection rotor blade model in spite of the differences between the formulations. The new YF/VABS rotor blade model accounts for arbitrary cross-sectional warping, in-plane stresses, and moderate deflections. The YF/VABS composite rotor blade model was validated against experimental data and various rotor blade analyses by examining displacements and stresses under static loads, as well as aeroelastic stability of a composite rotor blade in hover, and forward flight vibratory hubloads of a four bladed composite rotor.  相似文献   

18.
A significant advancement in the dynamic spin rig (DSR), i.e., the five-axis, three-magnetic-bearing DSR, is used to perform vibration tests of turbomachinery blades and components under rotating and non-rotating conditions in a vacuum. The rig has three magnetic bearings as its critical components: two heteropolar radial active magnetic bearings and a magnetic thrust bearing. The bearing configuration allows full vertical rotor magnetic suspension along with a feedforward control feature, which enables the excitation of various modes of vibration in the bladed disk test articles. The theoretical, mechanical, electrical, and electronic aspects of the rig are discussed. Also presented are the forced-excitation results of a fully levitated, rotating and non-rotating, unbladed rotor and a fully levitated, rotating and non-rotating, bladed rotor in which a pair of blades were arranged 180° apart from each other. These tests include the “bounce” mode excitation of the rotor in which the rotor was excited at the blade natural frequency of 144 Hz. The rotor natural mode frequency of 355 Hz was discerned from the plot of acceleration versus frequency. For non-rotating blades, a blade-tip excitation amplitude of approximately 100 g A−1 was achieved at the first-bending critical (≈144 Hz) and at the first-torsional and second-bending blade modes. A blade-tip displacement of 1.778×10−3m (70 mils) was achieved at the first-bending critical by exciting the blades at a forced-excitation phase angle of 90° relative to the vertical plane containing the blades while simultaneously rotating the shaft at 3000 rpm.  相似文献   

19.
Based on the Hamilton principle and the moderate deflection beam theory, discretizing the helicopter blade into a number of beam elements with 15 degrees of freedora, and using a quasi-steady aero-model, a nonlinear coupled rotor/fuselage equation is established. A periodic solution of blades and fuselage is obtained through aeroelastic coupled trim using the temporal finite element method (TEM). The Peters dynamic inflow model is used for vehicle stability. A program for computation is developed, which produces the blade responses, hub loads, and rotor pitch controls. The correlation between the analytical results and related literature is good. The converged solution simultaneously satisfies the blade and the vehicle equilibrium equations.  相似文献   

20.
Summary The aeroelastic response analysis of a coupled rotor/fuselage system is approached by iterative solution of the blade aeroelastic response in the non-inertial reference frame fixed on the hub, and the periodic response of the fuselage in the inertial reference frame. A model of the coupled system hinged with the flap and lag hinges, the pitching bearing which may not coincide with the hinges, and the sweeping-blade configuration is established. The moderate-deflection beam theory and the two-dimensional quasi-steady aerodynamic model are employed to model the aeroelastic blade, all the kinetic and inertial factors are taken into account in a unified manner. A five-nodes, 15-DOFs pre-twisted nonuniform beam element is developed for the discretization of the blade, three rigid-body-motion DOFs are introduced for the motion of the hinges and the bearing. The Hamilton's principle is employed to evaluate the equation of motion of the blade. The derived nonlinear ordinary differential equations with time-dependent periodic coefficients are solved by a modified quasi-linearization method, which is developed for the higher DOF periodic system. The resulting periodic forces and moments exerted on the fuselage by all the blades are evaluated every time, when the converged nonlinear periodic response of the blade is obtained under the consideration of the equilibrium of the blades. The fuselage structure is simplified to be a beam structure, the governing equation is established in the inertial reference frame and a two-nodes beam element is used to discretize the flexible fuselage. The periodic response of the fuselage is solved by a simple shooting method. The iteration of the rotor/fuselage response is continued, until the aeroelastic responses of the blade and the fuselage converge simultaneously. Both the hovering and the forward flight states can be considered. The results of a computed numerical example by the developed program are presented to verify in practice the economy of the modeling as well as the reliability and efficiency of the corresponding solving methods. Received 4 May 1998; accepted 11 August 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号