首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, a numerical methodology for modeling contact line motion in a dual-grid level-set method (DGLSM) – solved on a uniform grid for interface which is twice that for the flow equations – is presented. A quasi-dynamic contact angle model – based on experimental inputs – is implemented to model the dynamic wetting of a droplet, impacting on a hydrophobic or a superhydrophobic surface. High-speed visualization experiments are also presented for the impact of a water droplet on hydrophobic surfaces, with non-bouncing at smaller and bouncing at larger impact velocity. The experimental results for temporal variation of the droplet shapes, wetted-diameter and maximum height of the droplet match very well with the DGLSM based numerical results. The validation of the numerical results is also presented with already published experimental results, for the non-bouncing on a hydrophobic and bouncing on a superhydrophobic surface, at a constant impact velocity. Finally, a qualitative as well as quantitative performance of the DGLSM as compared to the traditional level set method (LSM) is presented by considering our experimental results. The accuracy of the partially refined DGLSM is close to that of the fine-grid based LSM, at a computation cost which is close to that of the coarse-grid based LSM. The DGLSM is demonstrated as an improved LSM for the computational multi-fluid dynamics (CMFD) simulations involving contact line motion.  相似文献   

2.
When high-velocity droplets make grazing impact with a superhydrophobic surface, the droplets undergo significant deformation before recoiling and rebounding from the surface. Two distinct operating regimes describe the response of the reflected droplet stream after impact. In the first regime, the droplets remain discrete and uniform after the impact, but exhibit rotation and significant oscillations. This regime dominates if each droplet can clear the impact region before the next droplet arrives. In the second regime, droplets cannot avoid coalescing into a puddle at the surface. A secondary jet is ejected from the puddle which breaks up into a random droplet stream after traveling a short distance due to the lack of a forced unstable perturbation. The droplet-to-droplet spacing in the incoming stream determines which regime rules, with the critical value correlated by a Weber number. In the first regime, a detailed accounting of the kinetic and potential energies reveals that neither droplet oscillation nor rotation can fully account for the loss of translational kinetic energy, indicating significant internal circulation must occur in the droplets at impact. An application of droplet rebound from a superhydrophobic surface is proposed.  相似文献   

3.
We present three-dimensional numerical simulations, employing a lattice Boltzmann method for three-phase system of liquid, gas, and solid, and investigate the influence of a solid particle on the dynamic and departure of a droplet after coalescence on superhydrophobic substrates. A particle can be removed autonomously by the jumping motion of the droplet, which partially or fully covers the particle. This spontaneous removal from superhydrophobic substrates is achieved by converting surface energy to kinetic energy, independent of gravity. We discussed the effect of size, wettability and initial placement of particle on the evolution of lateral and vertical motion of the droplet. The results indicate that the droplet with a fully immersed particle, as in the floating mechanism, reaches to the same equilibrium height as a particle-free droplet. However, the droplet with a partially immersed particle, as in the lifting mechanism, can have a substantial jumping velocity compared to a particle-free droplet. As the size of the partially immersed particle approaches its critical limit, which is equal to the size of the droplet, the droplet jumping and transport from the substrate is enhanced. Besides the particle size, the particle wettability can result in a considerable droplet jumping velocity. A particle with a neutrally wetting contact angle (i.e. 90°) is found to elevate the transport of the droplet to a higher distance from the substrate relative to a partially wetting case (i.e. 60°). In the lifting removal mechanism, unlike the floating removal mechanism, the particle initial placement is highly critical for the detachment of the merged droplet from the substrate, as well as the elevation of the detached droplet to a longer distance from the substrate. For a partially immersed particle, the critical particle initial position from the substrate above which the droplet-particle system does not jump away from the substrate is independent of particle size and wettability and is about 1.5rd where rd is the initial size of the droplet.  相似文献   

4.
采用改进的格子Boltzmann方法,对梯度润湿性表面上液滴的定向迁移及合并行为进行了数值模拟,该模型在精度和稳定性上都有很大改善,同时,研究了梯度润湿性表面上液滴定向迁移和合并的动力学特性,并对液滴尺寸及润湿梯度对液滴动力学特性的影响规律进行了分析。数值结果表明,液滴在梯度润湿性表面运动时会发生形变,且动态接触角逐渐减小。润湿梯度对液滴定向迁移行为有显著影响,润湿梯度越大,液滴左右侧接触线位移越大,润湿长度增加越快。但是液滴尺寸对接触线位移影响较小。润湿梯度对液桥宽度基本无影响,但对液滴初始合并时间有显著影响。  相似文献   

5.
Droplet impact on hydrophobic and superhydrophobic solid surfaces finds numerous applications, while the wide range of the parameters affecting its outcome necessitate a thorough study to reveal the underlying physics. Specific applications are related to the drop impact upon curved surfaces, such as micro-encapsulation in fluidized beds. Three-dimensional numerical simulations by applying Level-Set Method have been performed to investigate the water droplet impact on curved and flat hydrophobic and superhydrophobic substrates. Parameters such as the impact Weber number, the surface curvature and the equilibrium contact angle have been varied in order to assess their effects on the dynamics of the impact process. After providing a strong validation, it is found that impact on spherical surfaces generally presents a higher area of liquid to be in contact with the substrate with respect to the case of flat surfaces, when all other impact conditions are the same.  相似文献   

6.
A notable universal relationship has been proposed in the literature for the evolution of dimensionless droplet height and wetting diameter during the initial spreading stage of droplet impingement. In this study, this universal relationship was investigated by employing three sets of measurements. Sequential images were recorded, and the whole droplet profile ensembles were plotted to facilitate this study. These sets of experiments were designed by changing impact velocity, surface hydrophobicity, or solution property. The experimental results illustrate that the importance of parameters causing the data variation is in the order of surface hydrophobicity > initial impact velocity > surfactant on wetting diameter, and surface hydrophobicity ≈ initial impact velocity > surfactant on droplet height. No universal relationship was observed for dimensionless droplet height and wetting diameter.  相似文献   

7.
An efficient full approximation storage (FAS) Multigrid algorithm is used to solve a range of droplet spreading flows modelled as a coupled set of non‐linear lubrication equations. The algorithm is fully implicit and has embedded within it an adaptive time‐stepping scheme that enables the same to be optimized in a controlled manner subject to a specific error tolerance. The method is first validated against a range of analytical and existing numerical predictions commensurate with droplet spreading and then used to simulate a series of new, three‐dimensional flows consisting of droplet motion on substrates containing topographic and wetting heterogeneities. The latter are of particular interest and reveal how droplets can be made to spread preferentially on substrates owing to an interplay between different topographic and surface wetting characteristics. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
A mixed boundary element and finite element numerical algorithm for the simultaneous prediction of the electric fields, viscous flow fields, thermal fields and surface deformation of electrically conducting droplets in an electrostatic field is described in this paper. The boundary element method is used for the computation of the electric potential distribution. This allows the boundary conditions at infinity to be directly incorporated into the boundary integral formulation, thereby obviating the need for discretization at infinity. The surface deformation is determined by solving the normal stress balance equation using the weighted residuals method. The fluid flow and thermal fields are calculated using the mixed finite element method. The computational algorithm for the simultaneous prediction of surface deformation and fluid flow involves two iterative loops, one for the electric field and surface deformation and the other for the surface tension driven viscous flows. The two loops are coupled through the droplet surface shapes for viscous fluid flow calculations and viscous stresses for updating the droplet shapes. Computing the surface deformation in a separate loop permits the freedom of applying different types of elements without complicating procedures for the internal flow and thermal calculations. Tests indicate that the quadratic, cubic spline and spectral boundary elements all give approximately the same accuracy for free surface calculations; however, the quadratic elements are preferred as they are easier to implement and also require less computing time. Linear elements, however, are less accurate. Numerical simulations are carried out for the simultaneous solution of free surface shapes and internal fluid flow and temperature distributions in droplets in electric fields under both microgravity and earthbound conditions. Results show that laser heating may induce a non-uniform temperature distribution in the droplets. This non-uniform thermal field results in a variation of surface tension along the surface of the droplet, which in turn produces a recirculating fluid flow in the droplet. The viscous stresses cause additional surface deformation by squeezing the surface areas above and below the equator plane.  相似文献   

9.
This study compares experimental measurements and numerical simulations of liquid droplets over heated (to a near surface temperature of 423 K) and unheated cylinders. The numerical model is based on an unsteady Reynolds-averaged Navier–Stokes (RANS) formulation using a stochastic separated flow (SSF) approach for the droplets that includes submodels for droplet dispersion, heat and mass transfer, and impact on a solid surface. The details of the droplet impact model are presented and the model is used to simulate water spray impingement on a cylinder. Computational results are compared with experimental measurements using phase Doppler interferometry (PDI). Overall, good agreement is observed between predictions and experimental measurements of droplet mean size and velocity downstream of the cylinder.  相似文献   

10.
Silicon elastomer surface is treated towards achieving the hydrophobic state. Functionalized nano-silica units are coated onto elastomer surface and resulting texture characteristics are examined prior to stretching, stretched and after stretching. The droplet heating of the hydrophobic elastomer surface is carried out when the surface is subjected to unstretching, stretching and stretch releasing conditions. The thermal-flow field in the liquid is simulated and validated incorporating high speed recording system. Nano-size silica units coated elastomer surface demonstrates the hydrophobic wetting state. The hydrophobic wetting state changes slightly for stretched and stretched released surface. The contact angle is about 154° ± 2° for unstretched surface while it is 152° ± 2° for the stretched released surface; hence, stretch relaxing provides reversible change of the surface wetting state of the elastomer surface. The contact angle reduces to 142° ± 2° when surface is under stretched, which is related to increased pillar spacing on the surface. The droplet heating results in development of Marangoni current in the fluid, which significantly affects the flow and temperature fields and it becomes more apparent for the large size droplets. The maximum flow velocity increases almost 9% in 45 µL as the surface is stretched. The Nusselt number increases with droplet size and the Bond number has the values less than unity; hence, stretching increases the Nusselt number by 60% for droplet of 45 µL.  相似文献   

11.
离散型织构表面液滴的铺展及其接触线的力学特性分析   总被引:1,自引:0,他引:1  
焦云龙  刘小君  刘焜 《力学学报》2016,48(2):353-360
针对离散型织构表面上液滴的铺展过程,采用数值模拟和润湿性实验相结合的方法,引入织构润湿因子θ*,得到了不同类型的离散型织构对固体表面润湿性的影响,在此基础之上分析了液滴铺展过程中接触线的力学特性,以期从微观界面力学的角度解释微织构对液滴铺展过程的促进作用.研究表明:离散型织构增大了液滴铺展过程中的固-液接触面积,位于铺展前沿的液体分子部分浸润织构内部,导致液面曲率和液滴内部的拉普拉斯压力增大,相邻离散型织构间的液体获得了额外的驱动力和能量,铺展速度加快,平衡接触角减小;槽状离散型织构对表面润湿性的影响程度最大,液滴在其上铺展过程具有各向异性特性.另外数值仿真分析表明,接触线的钉扎效应与固体表面粗糙度的大小和微织构类型密切相关,表面粗糙度越大,钉扎效应越明显,其中槽状织构对接触线的钉扎作用还具有方向性.   相似文献   

12.
Experimental measurements and numerical simulations of a high-speed water spray are presented. The numerical model is based on a stochastic separated flow technique that includes submodels for droplet dynamics, heat and mass transfer, and droplet–droplet collisions. Because the spray characteristics near the nozzle are difficult to ascertain, a new method for initialization of particle diameter size is developed that assumes a Rosin–Rammler distribution for droplet size, which correctly reproduces experimentally measured Sauter and arithmetic mean diameters. By relating the particle initialization to lower moments of the droplet statistics, it is possible to take advantage of measurements without substantial penalties associated with the greater experimental uncertainty of individual droplet measurements. Overall, very good agreement is observed in the comparisons of experimental measurements to computational predictions for the streamwise development of mean drop size and velocity. In addition, the importance of modeling droplet–droplet collisions is highlighted with comparison of selected droplet–droplet collision models.  相似文献   

13.
复杂的流变特性使凝胶推进剂的雾化过程存在一定困难,这制约了它的发展.聚合物胶凝剂的加入使凝胶推进剂具有黏弹性,从而在雾化时会产生黏弹性液滴,因此为了进一步认识凝胶推进剂的雾化机理、提高凝胶推进剂的雾化性能,对黏弹性液滴的碰撞行为进行数值模拟研究.针对凝胶推进剂雾化过程中出现的液滴撞击现象,考虑流体具有的黏弹性效应,采用...  相似文献   

14.
Heating of a droplet on a stretchable hydrophilic surface is investigated and fluid dynamics in the droplet under the heating load is assessed. Elastomer wafers are considered as the sample material and the fixture is designed and manufactured to assure uniform stretching of the droplet located elastomer surface. Droplet adhesion and possible slipping/sliding of the droplet are evaluated during stretching of the sample surface. Numerical simulations are carried out to predict thermal and flow response of the droplet fluid before and after stretching. The effect of droplet volume on heating enhancement is also included in the numerical simulations. Experiments are carried out using a high-speed recording system towards comparing the flow predictions. Findings reveal that predictions are in agreement with their counterparts of experiments. Stretching of sample surface increases wetting area and lowers height of the droplet while influencing thermal flow structures in the fluid. The Nusselt and the Bond numbers increase with enlarging stretching, which becomes more visible for large droplet volume (80 µl). Hence, stretching corresponding to 80% extension of elastomer surface gives rise to 60% improvement in the Nusselt number.  相似文献   

15.
In this research, a novel approach is proposed to simulate the impingement of a water droplet on a superheated wall by solving conservation equations of mass, momentum and energy. Due to high temperature of the surface, a vapor layer is formed between droplet and surface. The vapor layer is captured using a very fine mesh near the surface. The level set method is applied for interface tracking and appropriate jump conditions are imposed at the interface by the ghost fluid method. The proposed algorithm is validated by comparing numerical results to the available experimental and analytical solutions. The effect of impact velocity, surfactant and polymer additives on the heat removal is studied. Simulations show that an increase in impact velocity enhances the heat removal. On the other hand, polymer additive has no significant effect while surfactant enhances dissipated heat by increasing the contact time or even by sticking the droplet on the surface.  相似文献   

16.
The hopping or bouncing motion can be observed when robotic manipulators are sliding on a rough surface. Making clear the reason of generating such phenomenon is important for the control and dynamical analysis for mechanical systems. In particular, such phenomenon may be related to the problem of Painlevé paradox. By using LCP theory, a general criterion for identifying the bouncing motion appearing in a planar multibody system subject to single unilateral constraint is established, and found its application to a two-link robotic manipulator that comes in contact with a rough constantly moving belt. The admissible set in state space that can assure the manipulator keeping contact with the rough surface is investigated, and found which is influenced by the value of the friction coefficient and the configuration of the system. Painlevé paradox can cause either multiple solutions or non-existence of solutions in calculating contact force. Developing some methods to fill in the flaw is also important for perfecting the theory of rigid-body dynamics. The properties of the tangential impact relating to the inconsistent case of Painlevé paradox have been discovered in this paper, and a jump rule for determining the post-states after the tangential impact finishes is developed. Finally, the comprehensively numerical simulation for the two-link robotic manipulator is carried out, and its dynamical behaviors such as stick-slip, the bouncing motion due to the tangential impact at contact point or the external forces, are exhibited.  相似文献   

17.
采用光滑粒子动力学SPH方法建立液滴冲击弹性基底的流固耦合数值模型,给出描述粘性流体和弹性固体运动的SPH离散方程和数值处理格式,引入人工耗散项来抑制标准SPH方法的数值震荡。为模拟液滴的表面张力效应,通过精确检测边界粒子,采用拉格朗日插值方法计算表面法向量和曲率,结合界面理论中的连续表面力CSF方法,建立了适用于自由表面液滴的表面力模型,方形液滴变形的模拟结果与拉普拉斯理论解吻合较好。随后,采用SPH流固耦合模型模拟1.0 mm直径水滴以不同速度(0.2 m/s~3.0 m/s)冲击两种薄板型基底,分析了基底弹性变形对液滴铺展、收缩以及回弹行为的影响。  相似文献   

18.
陈石  陶英  沈胜强  李德伟 《力学学报》2014,46(3):329-335
通过建立液滴撞击固体平壁的静态铺展力学平衡的数学模型,从理论上得到了静态铺展半径与液滴物性参数、以及液滴与固体壁面接触角之间关系的数学表达式,将理论结果与数值模拟的结果进行了比较,两者吻合较好.比较了不同条件下液滴的静态铺展半径的变化规律,分别得到了液滴密度、体积、表面张力和接触角等因素对液滴静态铺展半径的影响规律.   相似文献   

19.
We describe a tomographic PIV system for the measurement of the internal flow in a droplet over a stagnant and a moving surface. The flow condition is representative of the flow in an immersion droplet applied in a liquid immersion lithography machine. We quantify the accuracy and reliability of the measurements and compare the shape of the reconstructed measurement volume to shape measurements by means of shadowgraphy. First results indicate the internal flow pattern near the receding contact line, showing a small recirculation region.  相似文献   

20.
通过建立液滴撞击固体平壁的静态铺展力学平衡的数学模型,从理论上得到了静态铺展半径与液滴物性参数、以及液滴与固体壁面接触角之间关系的数学表达式,将理论结果与数值模拟的结果进行了比较,两者吻合较好.比较了不同条件下液滴的静态铺展半径的变化规律,分别得到了液滴密度、体积、表面张力和接触角等因素对液滴静态铺展半径的影响规律.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号