首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence of metastable states in the doubly ionized molybdenum dimer is studied using gradient-corrected scalar-relativistic density-functional theory. Seventeen metastable states are found within an energy range of less than 6.5 eV. All those states show lifetimes large enough to assure experimental detection. The calculation of the second adiabatic ionization potential of the neutral molybdenum dimer seems to confirm that the doubly ionized dimer is produced by the electron-capture process Mo2++Ar+-->Mo2(2+)+Ar, in which the ionization potentials of Ar and Mo2+ play a crucial role [K. Franzreb, R. C. Sobers, Jr., J. Lorincik, and P. Williams, J. Chem. Phys. 120, 7983 (2004)]. Moreover, the present results indicate that other species having ionization potentials between 13.01 and 15.34 eV could be used as projectiles to produce Mo(2)2+. It is also shown that Xe+ ions could not react with Mo2+ to produce double ionized dimers. A simple thermodynamic argument is also proposed that seems to increase the possibilities of forming Mo2(2+) from Mo2+ by using Ar+ as projectile ions.  相似文献   

2.
3.
We report diffusion quantum Monte Carlo (DMC) calculations of the equilibrium dissociation energy D(e) of the water dimer. The dissociation energy measured experimentally, D(0), can be estimated from D(e) by adding a correction for vibrational effects. Using the measured dissociation energy and the modern value of the vibrational energy Mas et al., [J. Chem. Phys. 113, 6687 (2000)] leads to D(e)=5.00+/-0.7 kcal mol(-1), although the result Curtiss et al., [J. Chem. Phys. 71, 2703 (1979)] D(e)=5.44+/-0.7 kcal mol(-1), which uses an earlier estimate of the vibrational energy, has been widely quoted. High-level coupled cluster calculations Klopper et al., [Phys. Chem. Chem. Phys. 2, 2227 (2000)] have yielded D(e)=5.02+/-0.05 kcal mol(-1). In an attempt to shed new light on this old problem, we have performed all-electron DMC calculations on the water monomer and dimer using Slater-Jastrow wave functions with both Hartree-Fock approximation (HF) and B3LYP density functional theory single-particle orbitals. We obtain equilibrium dissociation energies for the dimer of 5.02+/-0.18 kcal mol(-1) (HF orbitals) and 5.21+/-0.18 kcal mol(-1) (B3LYP orbitals), in good agreement with the coupled cluster results.  相似文献   

4.
The problem of transport in quasi-one-dimensional periodic structures has been studied recently by several groups [D. Reguera et al., Phys. Rev. Lett.96, 130603 (2006); P. S. Burada et al., Phys. Rev. E75, 051111 (2007); B. Q. Ai and L. G. Liu, ibid.74, 051114 (2006); B. Q. Ai et al., ibid.75, 061126 (2007); B. Q. Ai and L. G. Liu, J. Chem. Phys.126, 204706 (2007); 128, 024706 (2008); E. Yariv and K. D. Dorfman, Phys. Fluids19, 037101 (2007); N. Laachi et al., Europhys. Lett.80, 50009 (2007); A. M. Berezhkovskii et al., J. Chem. Phys.118, 7146 (2003); 119, 6991 (2003)]. Using the concept of "entropy barrier" [R. Zwanzig, J. Phys. Chem.96, 3926 (1992)] one can classify such structures based on the height of the entropy barrier. Structures with high barriers are formed by chambers, which are weakly connected with each other because they are connected by small apertures. To escape from such a chamber a diffusing particle has to climb a high entropy barrier to find an exit that takes a lot of time [I. V. Grigoriev et al., J. Chem. Phys.116, 9574 (2002)]. As a consequence, the particle intrachamber lifetime tau(esc) is much larger than its intrachamber equilibration time, tau(rel), tau(esc)>tau(rel). When the aperture is not small enough, the intrachamber escape and relaxation times are of the same order and the hierarchy fails. This is the case of low entropy barriers. Transport in this case is analyzed in the works of Schmid and co-workers, Liu and co-workers, and Dorfman and co-workers, while the work of Berezhkovskii et al. is devoted to diffusion in the case of high entropy barriers.  相似文献   

5.
The results are presented of three-dimensional model studies of the photodissociation of the water dimer following excitation in the first absorption band. Diabatic potential-energy surfaces are used to investigate the photodissociation following excitation of the hydrogen bond donor molecule and of the hydrogen bond acceptor molecule. In both cases, the degrees of freedom considered are the two OH-stretch modes of the molecule being excited, and the dimer stretch vibration. The diabatic potentials are based on adiabatic potential surfaces computed with the multireference configuration-interaction method, and the dynamics of dissociation was studied using the time-dependent wave-packet method. The dynamics calculations yield a donor spectrum extending over roughly the same range of frequencies as the spectrum of the water monomer computed at the same level of theory. The acceptor spectrum has the same width as the monomer spectrum, but is shifted to the blue by 0.4-0.5 eV. The dimer spectrum obtained by averaging the donor and the acceptor spectrum is broader than the monomer spectrum, with the center of the dimer first absorption band shifted to the blue by about 0.2 eV relative to the monomer band. Our reduced dimensionality calculations do not find the red tail predicted for the dimer first absorption band by Harvey et al. [J. Chem. Phys. 109, 8747 (1998)]. This conclusion also holds if preexcitation of the dimer stretch vibration with one or two quanta is considered.  相似文献   

6.
The quasiclassical absorption spectrum of the water dimer in the A band was calculated taking into account motion in all degrees of freedom of the system. The ab initio excited state potentials employed were interpolated by the modified Shepard interpolation method using QMRCI energies and state-averaged MCSCF gradients and Hessians. The ground state vibrational wavefunction was variationally calculated using an adiabatic separation between the high and low frequency normal modes of the system. The calculated spectrum of water dimer shows a clear blueshift with respect to the monomer, but also a small red tail, in agreement with the prediction by Harvey et al. [J. Chem. Phys. 109, 8747 (1998)]. Previous three-dimensional model studies of the photodissociation of the water dimer by Valenzano et al. [J. Chem. Phys. 123, 034303 (2005)] did not show this red tail. A thorough analysis of the dependence of the spectrum on the modes coupled explicitly in the calculation of the spectrum shows that the red tail is due to coupling between the intramolecular stretch vibrations on different monomers.  相似文献   

7.
The scope of the present work is to reconcile electron momentum spectroscopy with elementary thermodynamics, and refute conclusions drawn by Saha et al. in J. Chem. Phys. 123, 124315 (2005) regarding fingerprints of the gauche conformational isomer of 1,3-butadiene in electron momentum distributions that were experimentally inferred from gas phase (e,2e) measurements on this compound [M. J. Brunger et al., J. Chem. Phys. 108, 1859 (1998)]. Our analysis is based on thorough calculations of one-electron and shake-up ionization spectra employing one-particle Green's function theory along with the benchmark third-order algebraic diagrammatic construction [ADC(3)] scheme. Accurate spherically averaged electron momentum distributions are correspondingly computed from the related Dyson orbitals. The ionization spectra and Dyson orbital momentum distributions that were computed for the trans-conformer of 1,3-butadiene alone are amply sufficient to quantitatively unravel the shape of all available experimental (e,2e) electron momentum distributions. A comparison of theoretical ADC(3) spectra for the s-trans and gauche energy minima with inner- and outer-valence high-resolution photoelectron measurements employing a synchrotron radiation beam [D. M. P. Holland et al., J. Phys. B 29, 3091 (1996)] demonstrates that the gauche structure is incompatible with ionization experiments in high-vacuum conditions and at standard temperatures. On the other hand, outer-valence Green's function calculations on the s-trans energy minimum form and approaching basis set completeness provide highly quantitative insights, within approximately 0.2 eV accuracy, into the available experimental one-electron ionization energies. At last, analysis of the angular dependence of relative (e,2e) ionization intensities nicely confirms the presence of one rather intense pi(-2) pi(*+1) satellite at approximately 13.1 eV in the ionization spectrum of the s-trans conformer.  相似文献   

8.
Vibronically resolved spectra for the UO+2 cation have been recorded using the pulsed field ionization zero electron kinetic energy (PFI-ZEKE) technique. For the ground state, long progressions in both the bending and symmetric stretch vibrations were observed. Bend and stretch progressions of the first electronically excited state were also observed, and the origin was found at an energy of 2678 cm(-1) above the ground state zero-point level. This observation is consistent with a recent theoretical prediction [Infante et al., J. Chem. Phys. 127, 124308 (2007)]. The ionization energy for UO2, derived from the PFI-ZEKE spectrum, namely, 6.127(1) eV, is in excellent agreement with the value obtained from an earlier photoionization efficiency measurement. Delayed ionization of UO2 in the gas phase has been reported previously [Han et al., J. Chem. Phys. 120, 5155 (2004)]. Here, we extend the characterization of the delayed ionization process by performing a quantitative study of the ionization rate as a function of the energy above the ionization threshold. The ionization rate was found to be 5 x 10(6) s(-1) at threshold, and increased linearly with increasing energy in the range investigated (0-1200 cm(-1)).  相似文献   

9.
In a recent article we reported calculations of the ionization energy thresholds (IET) of microhydrated thymine (Close; et al. J. Phys. Chem. A, 2006, 110, 7485). Calculations showed a distinct effect of microhydration on the IET's of thymine. The first water molecule was seen to decrease the IET by about 0.1 eV, and the second and third water molecules caused a further decrease of less than 0.1 eV each. These changes in IET calculated for the canonical form of thymine with 1-3 waters of hydration are smaller than the experimental values determined by Kim et al. (J. Phys. Chem. C 1996, 100, 7933). In the present study it has been shown that there is considerable reorientation of the water molecules in microhydrated thymine upon ionization. This leads to the expectation that the experimental ionization energies may therefore represent an adiabatic process. The results presented here show that the changes in experimental ionization energies determined by Kim et al. for microhydrated thymine are in good agreement with the calculated adiabatic ionization energies.  相似文献   

10.
Pure rotational transitions in the ground state for Ar-OH and Ar-OD [Y. Ohshima et al., J. Chem. Phys. 95, 7001 (1991) and Y. Endo et al., Faraday Discuss. 97, 341 (1994)], those in the excited states of the OH vibration, nu(s)=1 and 2, observed by Fourier-transform microwave spectroscopy in the present study, rotation-vibration transitions observed by infrared-ultraviolet double-resonance spectroscopy [K. M. Beck et al., Chem. Phys. Lett. 162, 203 (1989) and R. T. Bonn et al., J. Chem. Phys. 112, 4942 (2000)], and the P-level structure observed by stimulated emission pumping spectroscopy [M. T. Berry et al., Chem. Phys. Lett. 178, 301 (1991)] have been simultaneously analyzed to determine the potential energy surface of Ar-OH in the ground state. A Schrodinger equation, considering all the freedom of motions for an atom-diatom system in the Jacobi coordinate, R, theta, and r, was numerically solved to obtain energies of the rovibrational energy levels using the discrete variable representation method. A three-dimensional potential energy surface is determined by a least-squares fitting. In the analysis the potential parameters, obtained by ab initio calculations at the RCCSD(T) level of theory with a set of basis functions of aug-cc-pVTZ and midbond functions, are used as initial values. The determined intermolecular potential energy surface and its dependence on the OH monomer bond length are compared with those of an isovalent radical complex, Ar-SH.  相似文献   

11.
The diffusion Monte Carlo (DMC) method is a widely used algorithm for computing both ground and excited states of many-particle systems; for states without nodes the algorithm is numerically exact. In the presence of nodes approximations must be introduced, for example, the fixed-node approximation. Recently we have developed a genetic algorithm (GA) based approach which allows the computation of nodal surfaces on-the-fly [Ramilowski and Farrelly, Phys. Chem. Chem. Phys., 2010, 12, 12450]. Here GA-DMC is applied to the computation of rovibrational states of CO-(4)He(N) complexes with N≤ 10. These complexes have been the subject of recent high resolution microwave and millimeter-wave studies which traced the onset of microscopic superfluidity in a doped (4)He droplet, one atom at a time, up to N = 10 [Surin et al., Phys. Rev. Lett., 2008, 101, 233401; Raston et al., Phys. Chem. Chem. Phys., 2010, 12, 8260]. The frequencies of the a-type (microwave) series, which correlate with end-over-end rotation in the CO-(4)He dimer, decrease from N = 1 to 3 and then smoothly increase. This signifies the transition from a molecular complex to a quantum solvated system. The frequencies of the b-type (millimeter-wave) series, which evolves from free rotation of the rigid CO molecule, initially increase from N = 0 to N~ 6 before starting to decrease with increasing N. An interesting feature of the b-type series, originally observed in the high resolution infra-red (IR) experiments of Tang and McKellar [J. Chem. Phys., 2003, 119, 754] is that, for N = 7, two lines are observed. The GA-DMC algorithm is found to be in good agreement with experimental results and possibly detects the small (~0.7 cm(-1)) splitting in the b-series line at N = 7. Advantages and disadvantages of GA-DMC are discussed.  相似文献   

12.
We have computed the vibrational spectrum of the helium ionized trimer He(3)(+) using three different potential energy surfaces [D. T. Chang and G. L. Gellene, J. Chem. Phys. 119, 4694 (2003); E. Scifoni et al., ibid. 125, 164304 (2006); I. Paidarova et al., Chem. Phys. 342, 64 (2007)]. Differences in the details of these potential energy surfaces induce discrepancies between bound state energies of the order of 0.01 eV. The effects of the geometric phase induced by the conical intersection between the ground electronic potential energy surface and the first excited one are studied by computing vibrational spectra with and without this phase. The six lowest vibrational bound states are negligibly affected by the geometric phase. Indeed, they correspond to wavefunctions localized in the vicinity of the linear symmetric configurations and can be assigned well defined vibrational quantum numbers. On the other hand, higher excited states are delocalized, cannot be assigned definite vibrational quantum numbers, and the geometric phase shifts their energies by approximately 0.005 eV.  相似文献   

13.
The electronic properties of liquid ammonia are investigated by a sequential molecular dynamics/quantum mechanics approach. Quantum mechanics calculations for the liquid phase are based on a reparametrized hybrid exchange-correlation functional that reproduces the electronic properties of ammonia clusters [(NH3)n; n=1-5]. For these small clusters, electron binding energies based on Green's function or electron propagator theory, coupled cluster with single, double, and perturbative triple excitations, and density functional theory (DFT) are compared. Reparametrized DFT results for the dipole moment, electron binding energies, and electronic density of states of liquid ammonia are reported. The calculated average dipole moment of liquid ammonia (2.05+/-0.09 D) corresponds to an increase of 27% compared to the gas phase value and it is 0.23 D above a prediction based on a polarizable model of liquid ammonia [Deng et al., J. Chem. Phys. 100, 7590 (1994)]. Our estimate for the ionization potential of liquid ammonia is 9.74+/-0.73 eV, which is approximately 1.0 eV below the gas phase value for the isolated molecule. The theoretical vertical electron affinity of liquid ammonia is predicted as 0.16+/-0.22 eV, in good agreement with the experimental result for the location of the bottom of the conduction band (-V 0=0.2 eV). Vertical ionization potentials and electron affinities correlate with the total dipole moment of ammonia aggregates.  相似文献   

14.
All bound rovibrational levels of the H(2)O-H(2) dimer are calculated for total angular momentum J = 0-5 on two recent intermolecular potential surfaces reported by Valiron et al. [J. Chem. Phys. 129, 134306 (2008)] and Hodges et al. [J. Chem. Phys. 120, 710 (2004)] obtained through ab initio calculations. The method used handles correctly the large amplitude internal motions in this complex; it involves a discrete variable representation of the intermolecular distance coordinate R and a basis of coupled free rotor wave functions for the hindered internal rotations and the overall rotation of the dimer. The basis is adapted to the permutation symmetry associated with the para/ortho (p/o) nature of both H(2)O and H(2) as well as to inversion symmetry. Dimers containing oH(2) are more strongly bound than dimers with pH(2), as expected, with dissociation energies D(0) of 33.57, 36.63, 53.60, and 59.04 cm(-1)for pH(2)O-pH(2), oH(2)O-pH(2), pH(2)O-oH(2), and oH(2)O-oH(2), respectively, on the potential of Valiron et al. that corresponds to a binding energy D(e) of 235.14 cm(-1). Rovibrational wave functions are computed as well and the nature of the bound states in the four different dimer species is discussed. Converged rovibrational levels on both potentials agree well with the high-resolution spectrum reported by Weida and Nesbitt [J. Chem. Phys. 110, 156 (1999)]; the hindered internal rotor model that was used to interpret this spectrum is qualitatively correct.  相似文献   

15.
16.
In this paper, double ionization energies (DIEs) of gas-phase atoms and molecules are calculated by energy difference method with density functional theory. To determine the best functional for double ionization energies, we first study 24 main group atoms in the second, third, and fourth periods. An approximation is used in which the electron density is first obtained from a density functional computation with the exchange-correlation potential V xc known as statistical average of orbital potentials, after which the energy is computed from that density with 59 different exchange-correlation energy functionals E xc. For the 24 atoms, the two best E xc functional providing DIEs with average absolute deviation (AAD) of only 0.25 eV are the Perdew-Burke-Ernzerhof functional modified by Hammer et al. [Phys. Rev. B 59, 6413 (1999)] and one known as the Krieger-Chen-Iafrate-Savin functional modified by Krieger et al. (unpublished). Surprisingly, none of the 20 available hybrid functionals is among the top 15 functionals for the DIEs of the 24 atoms. A similar procedure is then applied to molecules, with opposite results: Only hybrid functionals are among the top 15 functionals for a selection of 29 molecules. The best E xc functional for the 29 molecules is found to be the Becke 1997 functional modified by Wilson et al. [J. Chem. Phys. 115, 9233 (2001)]. With that functional, the AAD from experiment for DIEs of 29 molecules is just under 0.5 eV. If the two suspected values for C2H2 and Fe(CO)5 are excluded, the AAD improves to 0.3(2) eV. Many other hybrid functionals perform almost as well.  相似文献   

17.
The long-range correction (LC) scheme of density-functional theory (DFT) was applied to the calculation of the pi-aromatic interaction of the benzene dimer and naphthalene dimer. In previous calculations, it was confirmed that the LC scheme [Iikura et al., J. Chem. Phys. 115, 3540 (2001)] gives very accurate potential- energy surfaces (PESs) of small van der Waals (vdW) complexes by combining with the Anderson-Langreth-Lundqvist (ALL) vdW correlation functional [Andersson et al., Phys. Rev. Lett. 76, 102 (1996)] (LC-DFT + ALL). In this study, LC-DFT+ALL method was examined by calculating a wide range of PES of the benzene dimer including parallel, T-shaped, and parallel-displaced configurations. As a result, we succeeded in reproducing very accurate PES within the energy deviance of less than 1 kcalmol in comparison with the results of high-level ab initio molecular-orbital methods at all reference points on the PES. It was also found that LC-DFT + ALL gave accurate results independent of exchange-correlation functional used, in contrast with the strong functional dependencies of conventional pure functionals. This indicates that both exchange repulsion and van der Waals attractive interactions should be correctly incorporated in conventional pure functionals in order to calculate accurate pi-aromatic interactions. We also found that LC-DFT + ALL method has a low basis-set dependency in the calculations of pi-aromatic interactions. The present scheme was also successfully applied to the pi,[ellipsis (horizontal)],pi stacking interactions of naphthalene dimer. This may suggest that LC-DFT + ALL method would be a powerful tool in the calculations of large molecules such as biomolecules.  相似文献   

18.
19.
Ab initio calculations on the H(+)+NO system have been carried out in Jacobi coordinates at the multireference configuration interaction level employing Dunning's correlation-consistent polarized valence triple zeta basis set to analyze the role of low-lying electronic excited states in influencing the collision dynamics relevant to the experimental collision energy range of 9.5-30 eV. The lowest two adiabatic potential energy surfaces, asymptotically correlating to H(+)+NO(X (2)Pi) and H((2)S)+NO(+)(X (1)Sigma(+)), have been obtained. Using ab initio procedures, the (radial) nonadiabatic couplings and the mixing angle between the lowest two electronic states (1 (2)A' and 2 (2)A') have been obtained to yield the corresponding quasidiabatic potential energy matrix. The strengths of the computed vibrational coupling matrix elements reflect a similar trend, as has been observed experimentally in the magnitudes of the state-to-state transition probability for the inelastic vibrational excitations [J. Krutein and F. Linder, J. Chem. Phys. 71, 559 (1979); F. A. Gianturco et al., J. Phys. B 14, 667 (1981)].  相似文献   

20.
The translational anisotropy and rotational angular momentum polarization of a selection of rotational states of the O2 (a 1Deltag; v=0) photofragment formed from ozone photolysis at 248, 260, and 265 nm have been determined using the technique of resonance enhanced multiphoton ionization in combination with time of flight mass spectrometry. At 248 nm, the dissociation is well described as impulsive in nature with all rotational states exhibiting similarly large, near-limiting values for the bipolar moments describing their angular momentum alignment and orientation. At 265 nm, however, the angular momentum polarization parameters determined for consecutive odd and even rotational states exhibit clear differences. Studies at the intermediate wavelength of 260 nm strongly suggest that such a difference in the angular momentum polarization is speed dependent and this proposal is consistent with the angular momentum polarization parameters extracted and reported previously for longer photolysis wavelengths [G. Hancock et al., Phys. Chem. Chem. Phys. 5, 5386 (2003); S. J. Horrocks et al., J. Chem. Phys. 126, 044308 (2007)]. The alternation of angular momentum polarization for successive odd and even J states may be a consequence of the different mechanisms leading to the formation of the two O2 (a 1Deltag) Lambda doublets. Specifically, the involvement of out of plane parent rotational motion is proposed as the origin for the observed depolarization for the Delta- relative to the Delta+ state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号